
University Degree in Mechanical Engineering
Academic Year (e.g. 2022-2023)

Bachelor Thesis

“Condition Monitoring and Remaining
Useful Life Estimation of Wind Turbines

by means of Machine Learning Methods”

Artur Adam Habuda

María Belén Muñoz Abella
15th of June 2023

This work is licensed under Creative Commons Attribution – Non Commercial –
Non Derivatives





ABSTRACT

The objective of this project is to demonstrate a set of advantages that Supervisory
Control And Data Acquisition (SCADA) systems present for condition monitoring of
wind turbines. Accurate condition assessment of all components in wind turbines can
significantly reduced costs related to reparations and maintenance operations. Being in
possession of a proven and reliable condition monitoring method can improve the com-
petitiveness of wind power generation relative to non-renewable energy sources. This
fact, could finally bring us closer to a green and clean future.

In this project, SCADA systems are utilized to build several machine learning models,
whose mission is to find patterns in the SCADA datasets to predict and identify rises in the
generator’s bearing temperature levels. Such temperatures raises could suggest potential
faults in that component or other peripheric devices. This models are presented in different
case studies in which 6 Senvion MM92’s wind turbines at the Kelmarsh wind farm in
the UK, are tested. From SCADA files of 6 years of operation of each of the turbines,
four machine learning models are built to predict bearing temperature levels. In specific
a multiple linear regression model(MLR), a long short-term memory model(LSTM), an
eXtreme gradient Boosting model(XGboost) and a deep neural network(DNN) are built,
for this purpose.

The created models, predict with up to 80% accuracy the temperature levels of the
bearings, while additionally triggering a set of alarms that may indicate dangerous or
anomalous temperature rises. Not only it is demonstrated that data driven approaches
are useful for indicating faults in wind turbine components, but also a reliable and robust
methodology is presented to be used for real-world applications. In this work are also
presented numerous ways in which the models could be improved and future lines of
investigations that could be pursued.

Keywords: condition monitoring, wind turbine, bearing, MLR, LSTM, XGBoost,
DNN, machine learning, SCADA system, data-driven
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1. INTRODUCTION

1.1. Motivation

Wind energy is becoming an important player in today’s world energy economy. Spe-
cially in Europe, numerous countries are dedicating increasing amounts of resources and
efforts towards wind energy and its development. According to [1], since 2008, when the
first wind onshore farms began to be installed, the energy share owned by wind gener-
ation has increased from 0% to 6,65% of the world’s total energy production. And this
numbers are even more impressive when analyzed for developed geographic zones such
as Europe, where the importance of wind energy generation has been significantly greater.
According to a report on the evolution of wind power in Europe by Iberdrola.SA[2], in the
year 2021, wind generated 437TWh, enough to cover 15% of the European Union’s(EU)
electricity demand, of which 12,2% came from offshore wind and 2,8% from onshore
wind. Additionally in certain countries such as Spain, wind energy secured it’s spot as the
leading electricity generation source, with an outstanding 24% share.

(a) Growth of total wind energy capacity in Eu-
rope, 2012-2021

(b) Percentage of the average annual electricity
demand covered by wind in 2021

Fig. 1.1. Wind energy evolution in Europe [2]

Such efforts are motivated in large by international commitments oriented towards car-
bon neutrality. This is the case of the European Green Deal[3], a long-term plan mapped
by the members of the European union, with objectives such as; a 55% reduction in green-
house gas emissions by 2030(compared to 1990 levels) and becoming the first neutral
continent by 2050. Other international treaties and agreements[4] of similar nature such
as the Montreal Protocol, the Kyoto Protocol or the Paris agreement have all motivated
this accelerated advancement of wind energy technology.
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Wind energy generation has come a long way in the last 30 years, and during this time,
wind turbine technology has experienced a tremendous evolution. In the early years, wind
turbines were mainly used in remote onshore locations, and they were much smaller and
less efficient than the wind turbines we see today. Nowadays wind turbines have grown
taller and wider, with rotor diameters that can now reach up to 200 meters(Siemmens
Gammesa, SG 11.0-200 DD)[5]. As wind turbines have grown in size, they have also
become more efficient, with higher capacity factors that enable them to generate more
electricity. Offshore wind farms have also attracted many investors and enthusiasts, who
see their potential in allowing for better energy harvesting and reduced disturbance of
human activities. Nevertheless, operating in offshore environments, imply harsher con-
ditions for the operating equipment, due to higher air humidity and stronger winds. This
increase in dimensions and more demanding environment, has inevitably lead to higher
loads and stresses acting on the different components, which makes them more prone
to presenting faults. As wind turbine farms grow in number, and the market becomes
more competitive, it becomes crucial to reduce the downtimes produced by these faulty
states. According to Stehly et al.[6], the operational cost for onshore WTs can range be-
tween 32 and 54$/kW/year, whereas offshore WT faults can cause expenditures ranging
between 62 and 186$ /kW/year. Xiaohang Jin et Al[7] exemplifies that downtime cost for
a 2MW onshore WT, operating at 50% of its rated capacity, and with an electricity price
of 0,12$/kWh, would be 2,880$. Additionally, the cost of repairing a failed drivetrain
component belonging to a current commercial WT could reach to 250,000$ [8].

A report including failure statistics from several wind farms located in Germany, ex-
tracted from 15 years of data of the German ’250MW Wind program’ report an average
availability of about 98% .Data from Swedish turbines between 1997 and 2005 in Swe-
den, suggest an average failure rate of 0.4 failures per turbine per year. In these reports the
electrical and electronic systems were the most prone to failure, whereas generator and
gearbox faults caused the longest downtimes. Said cases serve to portrait the frequency
at which faults can be expected during normal operation scenarios in typical wind farms.
These, and more recent reports on fault statistics will be discussed on posterior sections
of this work.

Considering the potential looses originated from faulty states in drivetrains of WTs, it
becomes crucial to detect faults long before they are critical to the operation of the whole
system, and ideally, estimate the remaining useful life of the WT so that appropriate
actions can be taken to palliate the negatives related to the faulty component.

This work will try to collect, analyze and apply different techniques and methods, that
allow the early and reliable detection of WT drivetrain faults, as well as create estimations
on the remaining useful life of specific components within the drivetrain.
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1.2. Main objectives

With the accelerated incursion of wind turbines in the energy market, governments and
businesses strive to find new ways to become competitive with wind generation tech-
nology. Cutting down on costs, and reducing the financial impact of wind farms results
crucial for this purpose. As it has been shown earlier, the rapid detection of faults and an
accurate remaining useful life(RUL) estimation of any WT component can be an essential
process in reducing downtime and reparation costs, which in turn help the economic via-
bility of wind turbine generation projects. Taking into account the importance of this task,
this work aims to summarize and discuss several detection and RUL estimation methods
and then select and use this method on real WT sensor data, to test its effectiveness.

1.3. Work outline

After the introduction presented earlier, this work will begin, in chapter 2 "State of the
art" by commenting on the State of the Art of several topics related to Wind Turbines:
from the wind turbine themselves, to typical loads, main condition monitoring techniques,
machine learning algorithms and a deeper description of data-driven approaches for con-
dition monitoring purposes. The objective of this chapter will be to set the foundation
of the rest of the work and explain some of the steps and features commonly found and
applied in the industry.

Once, defined the state of the art techniques for condition monitoring, the developed
work will be presented in the third chapter: "Developed Work". This will consists of
several case studies and demonstrations of the results in a clear and structured manner.
From the developed work, results, conclusions will be deduced and a set of ideas will
be discussed with the purpose of finding the root causes to possible mistakes and further
lines of investigation and improvement. This will take place in chapters 4. "Results" and
5. "Conclusions and Future lines of investigation" In chapter 4 there is a section called
"Interesting points from the Case Studies". This section could be of special interest for the
reader, as novel ideas are discussed and perhaps, interesting conclusions could be present.

To contextualize the utility of the work and obtained results, two chapters on Socioe-
conomic impact(chapter 6) and Regulatory Framework(chapter 7) will be also included.

To conclude the annex with all the code for the machine learning models built during
the development of the project is also incorporated.
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2. STATE OF THE ART

In this section a closer look into typical faults in WT drivetrains and current method-
ologies available for detecting and determining the severity of this faults will be carried
out. A comprehensive explanation on Wind turbine, wind turbine main components and
typically loads found for this components. Additionally, a deeper delve into machine
learning algorithms will be performed, to demonstrate its potential for the achieving the
aforementioned objectives. The goal in this section is to end-up with a reliable, effective
method for diagnosing a WT, hence several trade-off analysis will be included to compare
different available methods. Also, Failure Statistics and technology trends will be com-
mented on, to acquire an overall picture of the current state of the field. This will allow
for a selection of diagnosis method aligned with the current common faults seen in the
industry and also provide this work with greater value, as it will be more relevant in the
foreseeable future.

2.1. Wind Turbines

Wind turbines are in essence relatively simple artefacts that can be subdivided in several
key parts. First the tower, that holds the task to support and position the the rest of the
WT at an optimal height to take advantage of better wind conditions. Second, the nacelle,
storing and protecting the drivetrain, responsible for transmitting and generating power;
and the power converter liable of making the generated electric power suitable for the
electric grid. Lastly, we find the rotor, compose by the blades and the hub, which are the
responsible for harvesting the mechanical power stored in the wind and transmit it to the
main shaft. Towers can vary in length and shape depending on their location and intended
function.

Although this simple explanation serves to showcase the fundamental working of most
commercially available WT it falls short in the context of a deeper analysis aimed to iden-
tify faults, which can be originated in any component in the WT, and can lead to catas-
trophic events that may force the stop of the WTs operation. A more in depth explanation,
specifically focused on drivetrains, as it is the main topic of study of this work, will be
carried out next.
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Fig. 2.1. Main parts and systems in typical 3-blade Wind Turbines.[9]

Generators

The main function of WT generators is to transform the mechanical power generated
by the blades and the rotor into electrical power that can be utilized in the grid. The
basic pyhisics principle behind the working of any electric generator, is electromagnetic
induction, which allows for the creation of an electric current through wire coils, when
a magnet is moving trough said coil. Inside the generator rotor and stator can be found,
in which the first is composed by all elements in the generator that rotate and the letter
in all elements that don’t. The coil with current can be found in either of this elements,
depending on the generator design, but in both cases the current flows from the output of
the coil.

Drivetrains of wind turbines could be categorized into geared and gearless or direct
drive(DD) types[10]. Geared systems are far more prone to failures and downtimes than
gearless WT. Gearboxes constitute one additional component that can be subject to failure
and it has one of the longest downtimes among all components within the WT. Gearless
drivetrains include hydraulic or direct drive systems. Theses gearless systems require
the use of big generators that inevitably increase the size and weight of the WT. Two
main configurations are the most common for direct drive systems: permanent magnet
synchronous generators(PMSG) and electrically excited synchronous generators(EESG).
In general Direct drive systems are inferior relative to geared generators in terms of re-
strictiveness for the generators, as certain design conditions need to be fulfilled in order
to cope with the large torque and low rotational speed provided by the rotor. Stronger
generators are needed in this case.
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For geared systems, on the other hand, other types of topologies and generators are
usually used. Gearboxes reduce the demands on the generator by reducing torque and
increasing rotational speed. Some of the most common configurations for geared WT
are: Squirrel cage induction generators(SCIG), doubly fed induction generators(DFIG)
and permanent magnet synchronous generators(PMSG) are usually the preferred choice.

Currently there is no clear winner between DD and geared configurations although
single or double stage gearbox with PMSG seems to be a preferred choice in the indus-
try.[10] A comparison between some of the mentioned configuration is provided in Fig
2.2. In said image some terminology to describe drivetrain configuration is used: (a) the
multi-stage gearbox (MSG) with SCIG; (b) the MSG with DFIG; (c) the single/double
stage gearbox (S/DSG) with PMSG; (d) the DD with PMSG; (e) the DD with EESG.
Multi.stage gearbox refers to a gearbox with a combination of two or more gear pairs. It
shall be mentioned that bigger and more complex generators characteristic of DD config-
urations are inevitably prone to higher failure frequency and longer downtimes.

(a) Common configurations of WT drivetrains
(b) Qualitative comparison between common

WT drivetrain configurations

Fig. 2.2. WT drivetrain configuration and comparison[10].

A promising technology for generator manufacture could be high-temperature super-
conductor generator(HTSG) which allows for lowered weight, size, high efficiency and
simple maintenance[11]. The technology is currently being explored by main WT manu-
facturers.

Possible faults in electrical machines range from electrical faults(stator or rotor in-
sulation damage, open circuit or electrical imbalance) to mechanical faults(broken rotor
bar, bearing failure, bent shaft or air gap imbalance). Electrical signals, electric machine
vibration, shaft displacement, torque measurements and temperature of the generator are
common ways for fault detection.

Power Converters

Before the electric power produced by the WT reaches the grid, a power conversion
step has to be still performed. In this step the voltage and current coming from the gener-
ator coil is transformed into appropriate values so that it can be connected with optimum
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efficiency to the grid.

Common topologies for power converters are partially loaded back-to-back converter(BTB),
typically used with DFIG for generators of less than 3MW; fully loaded BTB with PMSG
for power rating of 3MW or higher. For power levels of 10MW or more, multiple level
BTB converters are typically connected in parallel.

Fig. 2.3. BTB converter topology[12]

The electronic subsystems belongs among the most failure prone subsystems in WT.
This is specially true in large capacity WT. Failure in power converters are mainly due
to temperature, vibration and humidity. Temperature is the major stressor[9]. Capacitors,
PCBs, semiconductors, solder joints or connectors are just a few of the components that
can go wrong within the power conversion subsystem of a WT. Figure ... provides an
overview of the most failure share of each component.

Fig. 2.4. Failure share of different component within the power conversion subsystem[10]

PCBS could potentially have broken buried metal lines, corrosion or crack, board
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delamination, component misalignment,etc. Common capacitor failure modes include
excessive leakage and shorts, dielectric breakdown and leads separated from the capacitor,
to name a few.

Gearboxes

Three types of gears are mainly used in WT gearboxes: spur gears, helical gears and
double helical gears. Among the spur gear advantages stand out simplicity and efficiency.
Helical gears are characterized by higher operational torque and longer lifetime. Single
and double helical gears are used at high speeds.

Among the most common gearbox configurations we can find:

- Simple parallel axis gearbox: intended for the lower end of WTs in terms of power

- Gearbox introducing planetary gears: which enhances power generation abilities of
the drivetrain.

- Integrated Gearbox: a compact and lighter design that merges gear and rotor bearing

- Power split gearbox: specially useful for extra high-power applications(Several
MW). Another gearbox useful for this purpose is multi-output gearbox.

Fig. 2.5. Gearbox common configurations in WT drivetrains.[13]
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Another common set of gearbox topologies is described in Figure, in which each
topology is also associated with a power rating.

Fig. 2.6. Gearbox configurations by power rating.[10]

One aspect to take into account when it comes to gearboxes is their complexity which
seems to directly correlate with maintenance difficulty, downtimes and costs.

Most gearbox faults find their origin in design or material defects, manufacturing or
installation errors, misalignment, torque overloads, surface wear, fatigue or crack devel-
opment in certain areas. For example abrasion of gears could be caused by debris gener-
ated from bearing failure. Other failures of gears are independent of other components,
such as tooth abrasion due to poor lubrication.

Electrical signals from the generator and vibration monitoring are the favored super-
vision techniques for gearboxes.

Bearing

Main bearings are responsible for holding the rotor in place, transmitting loads and
maintaining alignment and structural rigidity of the wind turbine. Although many WTs
still make use of ball bearings, the current trend in the industry is shifting towards spher-
ical roller bearings in sub-5MW machines. Tapered roller bearings are also commonly
used for this power ratings. For WT of 5MW and above, it is common practice to choose
tapered roller main bearing technology. Bearings usually suffer significant variations in
load which enhance possibility of suffering damaging events such as roller skidding, wear,
abrasion or surface fatigue[14]. Bearing faults initially manifest as wear or surface rough-
ness of certain areas, and slowly develop into more sever faults such as fatigue cracks or
breakages of inner and outer races.

Vibration signals, electrical signal and acoustic emissions are the preferred parameters
to monitor for bearing fault detection.

Due to the current trend in increased integration of components, the main bearing
is even taking the role of supporting generator rotor while maintaining an appropriate
generator air gap[12]. These aspect should be taken into consideration for WT reliable
design, and even Condition monitoring, as perhaps main bearing could be find guilty of
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faults presented by generator.

Other components

Other important components that play crucial roles in the power generation of WT:
are pitch and yaw systems, mechanical brakes, hydraulic system, main shaft, secondary
bearings, sensors and control subsystems. Although the role of these components is as
important as the previous ones within a WT, a trough explanation of each of these is out
of the scope of this work, in which drivetrain components are the main focus.

2.2. Loads on Wind Turbines

No fault detection, diagnosis or prognosis method makes sense, without understanding
first the magnitude and nature of the loads under which a WT operates. These will affect
the intrinsic characteristics of the data provided by sensors within the WT, that will be
later used to detect faults and estimate their severity.

According to Xu, Ziyang et. Al [13] it is possible to differentiate between two types
of loads acting on a WT, depending on their origin. External loads, that arise from outside
factors such as wind, sea current or even gravity. On the other hand we have internal
excitations; forces generated within the WT that affect the normal operation of the whole
system. Further down the line, external loads can be subdivided mainly into loads in the
hub side, input loads via the bed plate and electric disturbances. The loads on the hub
side come mainly from the operating torque of the rotor, which is desired, and non-torque
loads caused by bending moment on the main shaft of the turbine, that is induced by phe-
nomena such as wind shear,gravity of rotor, tower shadow, control actions, etc. The thrust
generated by the rotating blades can be assumed negligible[15]. The operating torque of
the turbine depends directly on the speed of wind, and hence is highly variable. Providing
enough torsional-dumping becomes difficult, specially for direct drive configurations. It
is safe to assume that high speed winds can increase the vibrations in drivetrains. Non-
torque loads are highly undesirable and are responsible for increasing the dynamic forces
supported by bearings as well as increase the displacements within the gearbox. This
can worsen gearbox internal responses such as tooth edge loading, load sharing or gear
meshing. Tooth edge loading refers to the concentration of forces on the edges of the gear
teeth. Load sharing describes the distribution of the load on each specific gear within the
gearbox. Lastly, gear meshing refers to the process by which two gears engage with each
other. The disruption of this phenomena can eventually lead to premature gearbox failure,
which translates into extended downtimes and expensive reparation or replacement costs.
Input loads via the bad plate, depend on several factors such as tower height, foundation
type, materials, location or dumping of the nacelle[13]. Specially in offshore locations,
platform motions on the surge and pitch directions must be taken into consideration. Said
events can produce harmful consequences to drivetrains such as air-gap closure in gener-
ators or resonance in lower natural frequency components within the drivetrain. The first
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refers to the closure of the air gap separating the stator and the rotor in electric generator
which can alter the magnetic field produced in said generator and hence its performance.
The latter describes the match of a certain body vibration to its natural frequency. Finally,
electric disturbances of the form of voltage disturbance, can also produce fluctuations in
the generator’s electromagnetic torque that can cause even more serious vibrations than
mechanical torque. Electric disturbances impacts negatively the effective damping for the
electro-mechanical oscillation[16]. In edge scenarios, short circuits can produce sudden
torque change and vibration in mechanical parts. Additionally, grid loss situations can
cause important torque variations, since stored torsional energy is released by the drive-
trains.[17] The excitation frequencies in power loss events are close to drivetrain natural
frequencies, hence resonance could be perceived.

As for internal excitations, this are specially characteristic of gearboxes and genera-
tors. In gearboxes, meshing excitations induced by mesh stiffness, dynamic transmission
errors, gear backslash and structural damping are the predominant internal excitaitons.
For geared drivetrains, mesh frequency and its harmonics are the main focus of concern.
Moreover, flexible structures and floating components within the gearbox, further enhance
the magnitude of internal excitations. Noise in the gearbox is related to gear meshing and
impact[13].

Regarding WT generators, high internal excitations are specially noticeable in direct
drive systems. First, electromagnetic force generates noise and vibration, and second the
air gap between generator rotor and stator is an important source of internal excitations
as well. The generator rotor is subjected to external loads that inevitably influence the
separation between stator and rotor. One can be pulled towards the other which deviates
the stability of the air gap and generates non-homogeneous magnetic pull[18]. A stable
air gap is required for power conversion. Bearings and other damping subsystems meant
to isolate stator and rotor from external loads are typically installed in WT. Despite this
said measures are also subject to degradation and its performance is not always ideal.

With the current industry trend towards more complex and highly integrated systems,
understanding and monitoring internal excitations becomes more important than ever.
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Fig. 2.7. Schematic external loads acting on Wind Turbine.[13]

Fig. 2.8. Internal excitaitons drivetrain[13]

2.3. Failure Statistics

In an extensive wind turbine reliability data review conducted by Dao et al.(2019)[19],
90,000 turbine-years from over 18,000 WTs belonging to 18 data bases were analyzed
to determine common trends in failure statistics among WT. This study observed that in
terms of failure rates, electrical, control, blades and hub, and pitch systems are the most
critical subassemblies for onshore wind turbines as well as offshore ones. In terms of
downtime, gearbox, generator, blades and hub, and drivetrain were the most critical. It
was also found that offshore wind farms posses higher average failure rates than onshore
ones, as well as downtimes of offshore installations being approximately double than that
of onshore installations.These discrepancies were attributed mainly due to the difficulties
in repair/maintenance accessibility and harsh operating environment of offshore WTs. It
is relevant to mention that this study pointed out that generally failure statistics on WTs
posses significant variations in failure and downtime rates of different data sources. It
is concluded that data volume, collection duration, location and WT power rating are all
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influencing factors in failure trends in failures of these systems.

A different paper by Tautz-Weinert et al.[20] found out, from an evaluation of 15
years of German ’250 MW’ WT and more than 95% of all the WT operating in Sweden
between 1997 and 2005, that electrical control systems were the most failure prone, and
that the gearbox was the responsible for the longest downtimes. In the same study, Danish
statistics for WT were provided and it was found that the most affected system was the
yaw-system. In all the studied cases in the mentioned paper, the longest downtimes were
caused by the gearbox.

In Wilkinson et al.[21] a failure survey was analyzed, on the basis of 35,000 downtime
events from 350WTs. It was concluded that subsystems characterized with higher failure
rates were the power module assembly, the rotor module, control system, nacelle and
drivetrain, in descending order. The subbasemblies with most frequent failure occurrence
were pitch system, frequency converter and yaw system. The downtime hierarchy was
very similar.

The National Renewable Energy Laboratory in the US[22], published a report, based
on 289 failure events, in which approx. 70% of gearbox failures were caused by bearing
faults and approx. 26% by gear teeth faults.

Perhaps the most relevant work due to its scope and relative novelty, is the one from
Carroll et al.[23]. He noticed, from a study on approx. 350 offshore wind turbines, that
the average failure rate per wind turbine is about 10. Conclusions were extracted from
350 WTs, with all turbines ranging from 3 to 10 years of operation on 10 wind farms
throughout Europe(1768 turbine years).With dramatic replacements(more than 10k Euro)
accounting for 2.5% of this failures, major repairs(classified was those having an expense
between 1 and 10k Euro ) accounted for 17.5% and small repairs(of less than 1k Euro) that
were responsible for around 80% of the yearly failures. In this same study, the pitch/hy-
draulic subsystems, generator and power converter as the most prone to failure. The last
two are also more incline to present failures in offshore conditions than in onshore ones.
This disparity has been hypothesised to exist due to higher winds, bigger size of offshore
turbines and harsher conditions. A clear correlation was deduced from failure data and
wind speed, indicating that in fact a direct correlation between both variables existed,
making higher wind speed condition less favourable for longevity and health of WT com-
ponents. Hub, blades and gearbox had the highest repair times, repair costs and number
of technicians needed for the repair/replacement operation in offshore WTs. However
the hub and blades failure rate is much lower compared to the gearbox, which makes the
letter a major contributor to overall O&M costs. Another differentiating element between
onshore and offshore turbines is the lower failure rate of the onshore ones. The authors
propose that apart from the reasons mentioned before, the easier accessibility to onshore
WTs, inevitably causes them to be maintained to a better standard.

An interesting topic treated in this study is the analysis done on failure rate of WTs
per year of operation. In the image below, a representative progression of the failure rate
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of WT in the course of 8 years. In said image fairly high values are observed in the first 3
years, followed by a drop off in all type failures until year 6, followed by a peak in years
6 and consecutive reduction of failures in the following analyzed years. This points out
a downwards trend in faults for all turbines, that has been already discussed in the litera-
ture. Some studies have made the comparison of the evolution of failures of WT with the
bathtub curve[24] . Despite this, the paper argues that the systems that follow the bathtub
curve(i.e pitch and hydraulic system) are outnumbered by the systems that do not(i.e. con-
verter and electrical components). This challenges some of the common agreed concepts
regarding trend of faults within the CM context and behaviour for scheduled maintenance
operations, and perhaps opens up future possibilities for research. Keeping on that theme,
it is worth mentioning that different O&M approaches should be adopted accordingly to
the longevity of the system, as not only failure rate varies with time, but also the available
data for training data driven models is significantly reduced in the early stages of a WT
operation.

(a) Failure rate per year for WT (b) Failure rate per year for Generator

(c) Generator failure modes (d) Wind speed to Failure Rate relation

Fig. 2.9. Failure statistic representations[23]

From all the above discussed studies some common ground can be identified:

- Electrical, control, pitch and yaw systems, blades and hub are usually the most
failure-prone assemblies.

- Gearbox, generator, blades and hub as well as

- Offshore WTs, in terms of failure rates and downtimes, are for almost every sub-
assembly and component higher than for onshore ones.
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- The vast majority of faults belong to small and medium repairs, which are also
responsible for the majority of expenses of O&M operations.

- Failure rate is dependent on wind turbine lifespan, with varying but identifiable
behaviour for different components

2.4. Condition Monitoring of Wind turbines

Condition monitoring(CM) is an integral part of the operation and maintenance(O&M)
of a wind turbine. It is used as a mean of assessing the health of a component within the
wind turbine. The literature[13] identifies 3 types of maintenance for wind turbines:

- Reactive maintenance(fault-based): refers to an approach consisting of replacing
a component whenever a defect occurs or a set of defects accumulates on a given
component. It does not utilize CM and it is the most expensive approach as it re-
quires a full component replacement and potentially other components replacement
whose normal operation has been altered by the defective component.

- Preventive maintenance(time-based): consists of a maintenance practice in which
components are substituted before coming to a faulty state. A CM strategy can be
adopted in these type of maintenance to asses the likelihood of defect appearance
in a given component and repair it or replace it upon next intervention.

- Predictive maintenance(condition-based): in this approach, the condition of a given
component or system, constitutes the driving parameter for maintenance operations.
It is seen as the middle ground between time-based and fault-based approaches,
where the moment of action is timed at a point in time where a fault is still not
taking place but also it makes the most sense to act, according to other parameters
such as low speed wind, availability of wind turbine reparation vessels(in the case
of offshore installations),etc.

In the letter approach, CM plays a major role, as it is the responsible for determining
the moment of action.

Monitoring can be viewed from different perspectives. Firstly depending on the phys-
ical impact of the monitoring technique upon the component being monitored. From this
viewpoint Intrusive and non-intrusive monitoring can be distinguished.

- Intrusive monitoring: englobing methods that impose physical damage on the com-
ponent being monitored such as oil debris monitoring, vibration monitoring, shock
pulse, etc.

- Non-Intrusive Monitoring: composed of techniques that don’t cause damage of
the component being monitored. Some examples of this kind of monitoring are
ultrasonic testing, power signal analysis or thermography.
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On the other hand another differentiation can be done in the basis of the purpose. CM
can be used for fault in real-time fault detection or in the future.

- CM for fault detection:a fault is identified at the moment of occurrence.

- CM for fault diagnosis: in which based on historical faulty data, a chosen method
finds patterns in the input data to create predictions on future failure states of the
components.

Another important function of CM is Remaining Useful life estimation(RUL) of any
given component. This step is additional to CM for prognosis, as not only the fault is
predicted to exist in the future but also an estimate on the temporal occurrence of the fault
is produced.

2.4.1. Signals for Condition monitoring of Wind Turbines

Different signals are commonly used in the industry for condition monitoring purposes.
Understanding they advantages and drawbacks is a key step for deciding which data to
use and to get an overall picture of the different case scenarios in which each dataset could
fit best.

Temperature

CM trough temperature control in WT is typically approached by supervising the
output from a set of thermocouples placed in specific components in the WT, and watching
that said output doesn’t surpass certain values, that are considered to be in the range of
normal operation. Spikes in temperature can be caused by degradation of gear, bearing
or other mechanical components but also because of generator winding shortcircuits or
excessive rotor speed. To give an example, power converters are usually monitored by
using coolant temperature and case and junction temperatures of semiconductor modules.
This displays the usefulness of utilizing temperature readings form different sensors in
different locations for identifying faults in one given component.

Some of the arguments against and in favour of using this type of technology are:

- Temperature CM is considered a reliable and mature technology, that has proven to
be cost effective for detecting faults in WT.

- Nevertheless, temperature raises, which are the basis behind the working of this
approach, can be caused by meany events. It can be challenging to identify what is
the root cause of these spikes. Additionally temperature sensors are intrusive and
are prone to failure in harsh environments.

Acoustic emissions

16



Sound waves may be generated by materials subjected to stress, called acoustic emis-
sions(AE).AE sensors are placed on structures of interest to detect and diagnose possible
faults. AE waveform parameters such as rise time or amplitude can be use to estimate
where and when damage could happen, and how this damage would progress. Examples
of CM using this technology are shown in [25],[26] and [27], where gearboxes, bearings
and blade faults were respectively detected and diagnosed.

AE condition monitoring techniques have both positive and negative parts with respect
to other technologies:

- Noise signals have high SNRs and hence are suitable for highly disturbed environ-
ments. SNR is a measure used to compare the level of desired signal to the level
of background noise, produced by disturbances to the signal’s generating device.
Additionally noise signals have higher frequencies compared to other signals, and
therefore are effective in diagnosing incipient faults.

- On the other hand, condition monitoring trough this approach requires a large num-
ber of acoustic sensors trough the WT, which translates into elevated costs and com-
plexity. Moreover, theses sensors can be of difficult access during the operation of
the WT. High frequency data makes signal processing complex and computation-
ally heavy as well.

Oil parameters

Lubrication trough oil is commonly used in rotating machinery in WTs. Common
practice in the industry is to monitor oil characteristics such as water content, particle
count, temperature, level or pressure[28]. These parameters give clues to contamination
or degradation processes, which indicate the health of the WT. Two main types of oil
monitoring for WT exist[29]:

- Offline oil monitoring: done by periodic offline sample analysis by extracting the
sample and transporting it into analyses facilities. The main drawback of this
method is that faults occurring between consecutive samples may not be detected
timely.

- Online oil monitoring: measures oil parameters trough sensors installed in the WT.
Measurements require additional information transmission systems that further in-
crease costs of this type of monitoring. Although overcoming the key disadvantage
of offline monitoring, increased costs and equipment complexity constitute impor-
tant drawbacks. Another negative aspect is the complexity in interpreting the infor-
mation provided by the inline oil sensors. Moreover, not all oil parameters can be
monitored with this approach.

Electrical Signals
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Motors and generators within the WT produce certain voltages and currents at its ter-
minals that can be used for condition monitoring of wind turbines. Inherently, these type
of signals are mainly utilized for analysis of generator or other electrical components
faults. Typically these faults are studied from the harmonics of the produced electrical
signals. Faults in an induction generator of a WT(Popa et al.[30], trough stator and rotor
currents were identified. In Yang et al.[31] rotor electrical imbalance of an induction gen-
erator was detected and studied. Although electrical signals are mainly used for electrical
components CM, it is also possible to identify mechanical faults with this type of signal.
Thanks to the electromechanical coupling between many components and the generator,
mechanical faults expressed in the form of vibration anomalies translate into modulation
of the electrical signal produced by the generator. For example in Jeffries et al.[32], a
significant reduction in stiffness of blades was detected trough monitoring changes in the
power spectral density of the WT electrical power. In [33] and [34] they were able to
identify bearing and gearbox faults respectively, from generator current signals.

The main advantages of electrical signal analysis:

- Necessary equipment already in use in WT: no need for added sensors. Hence lower
capital expenditure and easier implementation than other signals, as vibration or
acoustic sensors.

- Electrical signals are easily accessible and readable.

- Well developed instrumentation and understanding of its use. In general, electrical
signal analysis is considered a reliable method for CM.

As for the disadvantages:

- Despite being able to detect faults in coupled components to the measured electrical
signal producing devices, they present important limitations in terms of detecting
mechanical faults of other components.

- low signal to noise ratio(SNR).

- Fault associated characteristics in the electrical signal are modulated trough its
intrinsic harmonic components, which are proportional to the non-stationary WT
shaft rotating speeds. Therefore complex signal processing models are needed for
identifying fault signatures in the non stationary electrical signals.

Vibration data

Vibratory data has been historically of great interest for condition monitoring and
health determination of WTs. It is by far the most used signal for CM. Usually vibration
data is extracted by means of accelerometers, velocity sensors or displacement sensors,
being the first ones the preferred choice due to their high sampling rate: 1 to 30kHz. By
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analyzing the vibration signal in different domains, such as time or frequency domain,
faults can be detected, and by analyzing the magnitude or frequency of certain compo-
nents within the signal the severity of the faults can be assessed.

Gearbox[35], bearing[36], blades and rotor[37] are some examples of mechanical
components that can be studied trough this kind of analysis. Possible analysis can be
also carried out in tower, shafts, breaks, etc. The wide spectrum of components that can
be supervised for anomalies, makes this technology very appealing for CM purposes.

Vibration data allows for the earliest fault or anomaly detection in WTs. On the other
hand, vibration data is expensive both in terms of equipment in the form of sensors and
computationally, due to the high sampling frequency of this kind of data. Additionally is
is not capable of detecting electrical faults.

In Ibrion et al.[38] it is described the utility of different signals; such as vibrations,
acoustic signal, lubrication particles and temperature; for detection of faults at different
points in time. Vibrations are discussed to be the signal with highest capability for early
detection of WT and temperature as the lowest one. This results reinforces the previously
discussed ideas; in which temperature changes are often times associated with secondary
effects of faults.

Fig. 2.10. Overview of incipient failure identification at different stages[38]

Merizalde et al.(2019)[39] proposed the predominance of vibration data for CM over
SCADA and electrical signal pointing out some key advantages of this type of data:

- Every mechanical component with rotational, linear or reciprocating movement
within the WT produces some kind of vibration that will be transmitted to all
coupled structures. The vibration magnitude can be indicative of the equipment’s
health.
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- Vibration signals are the earliest proof of faults

- It has less limitations than other signals for detecting faults in most WT compo-
nents.

- It is a well matures and standardized technology

Regarding the disadvantages of this type of signal with respect to others:

- Vibration monitoring requires additional sensors and equipment which makes it
more expensive,

- The installation of the sensors is intrusive and sometimes can result challenging.
Additionally vibration sensors are delicate instruments which can be subject to fail-
ure.

- Vibration signal have a low SNR when used to diagnose incipient faults.

- High sampling rate of this kind of signal, brings big data challenges.

- Cannot detect electrical faults

SCADA data

Nowadays, wind turbines have multiple data sources available to make predictions
on condition and health estimation of the different turbine components. Nevertheless,
there is one set of data that is available in most common wind turbines. SCADA stands
for Supervisory Control And Data Acquisition. These systems are built into WTs and
provide input about a range of physical data relative to the turbine, typically in the form
of 10 min intervals averages and statistics. SCADA systems are not originally meant
for CM but rather for remote supervision and control purposes. Despite these, the high
availability of these data, their economic appeal and the presence of extensive records
along years of wind farm operation, makes this dataset a focus of research and technology
development in the industry. Although other data could provide more accurate and reliable
information about the state of various WT components, this are not standard among WT
manufacturers, they lack a history record to be studied, and require additional costs to be
installed and maintained.

As mentioned before SCADA data are typically averaged every 10 min and sampled at
around 1 Hz. Although not all SCADA parameters are useful for CM applications, many
are quite revealing on the state of different WT components. In Nejad et al.[12] they
propose a classification of SCADA data according to its belonging to Environmental,
Electrical, Control variable or Temperature. In Kusiak et al.[40], the proposed classifi-
cation of SCADA parameters is wind parameters(direct measurement of wind), Energy
conversion parameters(related to energy conversion process such as power output, pitch
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angle, rotor speed...), Vibration parameters(both from nacelle and tower) and Temperature
parameters(temperature measured at turbine components).

Fig. 2.11. Summary of basic SCADA input variables [14]

Condition monitoring based on SCADA data targets, in most cases, secondary effects
of the fault. Typically SCADA based CM, uses WT under performance or anomalous
overheating of specific components to detect faults within the wind turbine.

Another problem found with SCADA data, is the time averaging performed to the
sensed signals. As mentioned before, SCADA data is usually collected as statistical data
from 10 minutes of operation of the WT. This sampling rate hinders the possibilities of
this type of data for incipient fault detection, as much time is needed for any decision
autonomous or experience based approach for CM to get enough data to draw any con-
clusion on the health of a given component.

One of the main advantages of this type of data is its potential to be utilized by data
driven algorithms for condition monitoring. Some of these algorithms thrive with large
amounts of data at their disposal, and the long history of available SCADA data from
different wind farms around the world, make this dataset ideal for this application. ’Data-
hungry’ ML models are currently booming on today’s day an age, and new and exciting
research is being developed in this area. Hence SCADA data is the best bet for taking
the most advantage out of this effort. SCADA is a large, standardized set of parameters
present in almost every modern wind turbine, so developing CM methods on top of this
resource makes a lot of sense from a practical standpoint. It shall be mentioned that the
access to this kind of data from research institutions is limited, and most available data
is restricted to private corporations. Although competitiveness and business advantages
are important factors for companies, the disclosure of this kind of data could be very
beneficial for the research community, as more rich data pools would greatly enhance the
pace of progress and discovery from the academic side of the industry; and consequently
to the entire wind generation industry.
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2.4.2. Fault Detection

This is the first and most basic step in any condition monitoring approach. As explained
before, fault detection consists on determining whether a fault has happened or not. It
involves keeping track of various parameters within the WT to asses its performance,
identify ’normal’ behaviour, and consequently recognize when anomalies happen. This
anomalies or deviations from normal operation are finally judged to conclude if they cor-
respond to a fault or not. Normal behaviour is considered as optimal or in line with the
expected values projected for the given WT. Any behaviour out of this norm is consider
anomalous. Fault detection also involves determining the severity of a given fault. This is
achieved by empirically measuring the deviation of the anomalous behaviour relative to
the defined normal.

Fault detection is an indispensable step in diagnosis and life estimations of compo-
nents, but the level of uncertainty in this area of research is much lower than in the other
cases. For this reason less attention is given to this topic in the recent literature. Never-
theless, several methods, based on human expertise on the topic, data driven approaches,
or a combination of both, already are capable of reliably and accurately determine if a
fault is taking place. In Ling Xiang et al.[41] a data driven approach for detecting faults is
presented, in which a data driven approach based on Convolutional neural network(CNN)
and attention mechanism(AM) is utilized to extract useful patterns from SCADA data and
distinguish between ’healthy’ and ’faulty’ states. Terms such as CNN or AM belong to a
series of data-driven approaches that will be treated with more detail in section 2.3 of this
work.Another set of examples of fault detection methods is presented in Bebars et al.[42],
in which a review for doubly-fed induction generators(DFIG) is carried out. The paper
discusses methods that can be used to detect internal electrical faults in a DFIG stator,
rotor or both.

2.4.3. Fault Diagnosis

Once a fault is detected, fault diagnosis focuses on identifying the root cause or specific
type of fault within the wind turbine. This step is key for good planning and timing and
good planing of maintenance operations. In general fault diagnosis methods can be clas-
sified in knowledge-based methods, analytical models and data-driven methods(Mingzhu
Tang et al.[43]). Knowledge based methods rely on experts experience. These meth-
ods accuracy and reliability largely depend on the quality and amount of the expert’s
knowledge and understanding of the topic. The main drawback of this approach is the
poor self-learning abilities and error recognition from previous diagnosis, relatively to the
other two methods.

Model-based methods rely on mathematical models of the turbine system, to analyze
the WT and achieve real-time diagnosis of the faults. These diagnosis are hence very
dependent on the model parameters and the accuracy of the internal WT system mod-

22



elling dictates the accuracy of the outputs. The modelling of the aforementioned system
can become highly complex due to elements such as gearboxes, in which complex con-
tact mechanics between gears require simplifications that give rise to residual errors and
approximate values. Often, a trade off between model accuracy and computational expen-
diture has to be done(R.Nejad et.al[12]).

Data-driven approaches, such as principal component analysis, support vector ma-
chines, artificial neural networks, and deep learning algorithms, leverage historical data
and patterns to classify and identify the fault type.

2.4.4. Fault prognosis

Fault Prognosis is concerned with estimating time related information about faults. In
specific, a subset within fault prognosis, is Remaining Useful life estimation(RUL), that
relates to the prediction of the remaining operational life of a wind turbine or its com-
ponents. This information is crucial for planning maintenance activities, managing spare
parts inventory, and minimizing downtime. RUL estimation methods can be broadly clas-
sified into data-driven, model-based, and hybrid approaches. Data-driven methods, such
as regression analysis, Kalman filters, particle filters, and recurrent neural networks like
LSTMs, use historical data to predict future performance and failure times. Model-based
methods rely on physics-based or empirical models, while hybrid approaches combine
data-driven and model-based techniques for improved accuracy.

2.5. Machine Learning Algorithms

Two simple distinctions can be made based on the level of human supervision required
for the successful deployment of the machine learning method.

Supervised learning: It draws conclusions based on labeled input data. Each data point
is connected to a known output or goal variable. These algorithms develop a mapping
function that they can use to forecast the results for brand-new, unexplored data points.
A rule or connection that maps inputs to outputs is referred to as a mapping function. A
mapping function is used in the context of machine learning to explain the connection
between the input data (independent variables) and the output data (dependent variables),
allowing predictions to be made for new, unforeseen data points. Such mapping function
can be denoted by the formula f(x) = y, where x denotes the input, y the output, and f
the function denoting the connection between the two. To learn the best approximation
of this function from a given collection of training data is the objective of many machine
learning algorithms.

In supervised learning tasks, such as classification and regression, the mapping func-
tion is learned based on the input-output pairs in the labeled training dataset. Once the
function is learned, it can be used to make predictions on new, unseen input data points.
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Regression models predict a numerical output when the system is operating at what is
called "normal" or "healthy" state. For example, a regression model of the power curve
of a specific wind turbine can be built (power generated by the turbine vs wind speed),
and hence a more accurate representation of the power output of the turbine in different
external conditions can be obtained, instead of relying on the power curve given by the
WT manufacturer, which is obtained in one specific environmental condition. Outliers or
points that deviate greatly from the trend depicted by the regression model can indicate
a fault in one of the components of the WT, which can be very useful for CM purposes.
Regression models can posses different levels of complexity

Classification models, on the other hand find relationships between independent vari-
ables within sets of data. This sets of data are often times assigned to predefined categories
identified by labels.

Machine learning models use various techniques to learn and represent mapping func-
tions. Some examples include linear regression (where the mapping function is a linear
combination of input features), decision trees (where the mapping function is represented
as a tree-like structure of decisions based on input features), and neural networks (where
the mapping function is represented as a composition of multiple layers of interconnected
nodes or neurons).

The choice of the mapping function depends on the specific problem, the data avail-
able, and the desired level of complexity or interpretability of the model.

Some interesting supervised learning models include:

- Artificial Neural Network(ANN): This kind of models consist of three layers, each
composed by a set of neurons: input, output and hidden layer. Signals travel from
the input layer to the output layers, passing trough the hidden layers, in which this
signals are transformed by mathematical functions chosen by the creator of the
net to optimize for the desired outputs. Each neuron processes the signal received
trough the connection with another neuron, which then forwards the transform sig-
nal into another neuron. This process iterates until reaching the output layer. Each
neuron get a weight assign, which automatically adjust according to its contribu-
tion in yielding a correct prediction in the output layer. Commonly used neural net-
work methods are: self-organizing maps neural networks(SOM), radial basis func-
tions(RBF) and Adaptive resonance theory(ART). ANN provides good robustness
and precision but it also requires numerous parameters and extensive training time.
It also works well with non-linear data is performs exceptional good in contexts in
which incomplete or poorly categorize data exists, as it can learn an generalize with
ease. This kind of technique may not be optimal for non data-rich contexts and it
can make it difficult to interpret and explain learned relationships.

- Support Vector Machine (SVM): This type of algorithms is used both in regression
and classification tasks in which the objective is to fin two hyperplanes to separate
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two sets pf data in a multi-dimensional space and maximize the margin between
the hyperplanes. In simpler terms, given a dataset, a decision plane separating all
datapoints in two groups, is tried to be defined, in order to maximize the distance
from the datapoints of each group to the decision hyperplane. SVMs are effec-
tive in high-dimensional spaces and robust to outliers. On the other hand they are
computationally expensive for large datasets.

- Decision Tree(DT): this machine learning models work by recursively partitioning
the input data into subsets based on feature values, yielding a tree-like structure.
A set of conditions is established at different levels of the learning process, and
datapoints are assigned to certain categories or processed further than the line, de-
pending if they fulfill or not his conditions. Some advantages of this method, is that
it is relatively simple to interpret, as it mimics human decision-making; it doesn’t
require much data pre-processing; and has fast training and prediction times. On
the other hand, it is prone to overfitting, can be very sensitive to small changes in
the training data and often is not as accurate as SVM or ANN.

- Ensemble Learning: The basic idea behind Ensemble Learning is to merge and train
several base learning models into a greater model that has better performance on av-
erage than any other single member.Some frequently employed ensemble learning
techniques are bagging and boosting. Bagging consist in dividing the original data
sets into smaller datasets and training different models with each sub-dataset. Then,
the prediction of all the methods is combined to produce a more reliable estimation.
A popular bagging algorithms is random forest(RF). In boosting algorithms, simi-
larly to bagging ones, different machine learning models are used to make predic-
tions on the dataset, but in this case the training is not performed in parallel among
different sub-datasets but each model is trained on the same original dataset, and the
weight given to each prediction is given according to the correctness of the mod-
els prediction. Popular boosting algorithms are XGBoost and LightGBM. Among
the positive points of Ensemble Learning models are: good performance and gen-
eralization and reduced overfitting by averaging the outputs of different models.
The negative aspects are the increased complexity compared to single-model ap-
proaches, computational expenditure and difficult interpretation.

- Deep learning: this basically refers to deeper ANNs, composed by multiple lay-
ers of hidden layers. Configurations such as deep belief nets(DBNs), deep auto-
encoder(DAE) networks and convolutional neural netwroks(CNNs) are commonly
employed. Deep learning algorithms are capable of working with hierarchical and
abstract representations of data and work really well with large datasets. Neverthe-
less they are computationally heavy, prone to overfitting and difficult to interpret
and tune.
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(a) Artificial Neural Network scheme for fault
detection and diagnosis[43] (b) Representation of Support Vector Machine.

(c) Decision Tree schematic for Fault diagnosis (d) K-means clustering

Fig. 2.12. Schematics for different machine learning methods[43]

Unsupervised learning: provides output predictions based on unlabeled input data, by
means of recommender systems, clustering algorithms, etc A very representative tech-
nique in unsupervised learning is clustering. Most methods in this kind of learning are
based on clustering. A data set is organized into clusters or groups according to their
similarity in terms of certain parameters which the algorithm is trying to optimize for.
K-means, fuzzy C-means(FCM) and Gaussian mixture model are some typical examples
of clustering algorithms.

- K-Means: this algorithm tries to divide the initial dataset composed by n observa-
tions into k clusters. An ideal data point or mean is chosen for each cluster and then
all datapoints or observations are assigned to one of the clusters. K-means is sim-
ple in its implementation and performs well for fault diagnosis purposes. Despite
this, the initial cluster center or ’ideal’ data point of each cluster can be difficult to
choose and often times is the source of problems in the case of WT fault monitoring

- Fuzzy C-Means(FCM): for this algorithm each data point can belong to more than
one cluster. The goal is to maximize the similarity between points in a cluster while
minimizing the similarity between points in different clusters. One of the drawbacks
of this type of algorithm, similarly to other unsupervised methods commented in
this section, is its inability to create effective predictions from large, almost fault-
free datasets.
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- Hierarchical Clustering: in this method a hierarchical structure of clusters is cre-
ated. This hierarchy can be pictured as a tree-structure, in which the leaves are
the original observations are slowly the model converges into fewer branches until
reaching the root or main branch in which a definitive cluster is identified. Gaussian
Mixture models are time consuming and therefore unsuitable for large WT datasets,
due to the need of calculating large proximity matrices between data points.

- Gaussian Mixture Model(GMM): this models assumes that all observations fit to
the Gaussian distribution, and is created from a mixed number of statistical models
with unknown parameters. By conforming a linear mixture of Gaussian distribu-
tion functions, data distribution can be performed. GMM perform positively in big
volume datasets, but is computationally heavy and time consuming.

Tang et al.[43] proposes an additional categorization of computer learning technique
called Semi-supervised Learning Methods. This method recognizes some shared charac-
teristics between labeled and unlabeled data samples to assist in determining the model’s
characteristics and to transfer labels from labeled to unlabeled data. The main idea behind
semi-supervised learning models comes from the principle that it is easier and cheaper to
train a dataset from unlabeled data than from labeled one. To improve the accuracy of the
prediction labeled data is added.

- S3VM: this method takes the basic idea behind SVM models. It defines a hyper-
plane with the unlabeled data and then improves the prediction performance by
adding labeled data until successful fault diagnosis rate is sufficient. The main
drawback of such model could rely on the uncertainty in determining how large
should be the WT data-sample to create an effective model.

- Generative Models: these are based on the likelihood that unlabeled observations
belong to a given category. An expectation maximization algorithm is used to make
the likelihood estimate.These models are robust, but have shown low accuracy and
long training times.

Fig. 2.13. Taxonomy of ML models [13]
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2.6. Data Driven Condition Monitoring

2.6.1. Data acquisition

The initial step of any data driven condition monitoring approach is to collect the data.
This is usually done by means of sensors placed on the wind turbines measuring all sorts
of parameters of interest: vibration, temperature, acoustic emissions, electric signals,etc.
Typically the data of interest is the described in the section of this work: "Signals for
Condition monitoring of Wind Turbines". These sensors provide a comprehensive picture
of the turbine’s performance and health.

2.6.2. Data Pre-processing

Raw data from sensors can oftentimes be noisy and contain outliers. This step involves
outlier identification, which consists on discarding extreme or likely impossible values
originated from measurement errors, extreme environmental conditions or some other
anomaly in the habitual operation of the WT.

It is interesting to mention a study from Puig et al.[44], in which the effectiveness
of purely data driven models for filtration and elimination of outliers of data, seems to
perform poorly. More specifically, it was experimentally demonstrated that although per-
forming well in train data set, most of the models decreased their predictive performance
when faced with new data. This was attributed to the removal of many outliers that were
indeed fault states of the WT. They argue that a more intelligent strategy would be to
manually define ranges(absolute and relative) for the variables to be analyzed. Manufac-
turers and human experts asses the normal operation ranges for the WT and said figures
should make sure that the selected ranges are broad enough to contain values of healthy
and damaged wind turbines, excluding real outliers.

2.6.3. Feature selection

Due to the size an amount of data available for post processing, in the context of condition
monitoring, feature extraction becomes a critical mechanism for reducing the computa-
tional load of the entire process as well as removing possible outliers than can hinder the
performance of the predictions done by the system. By keeping the main characteristics
of the signals produced by the sensors, noise can be effectively discarded, and speed of
training model is enhanced.

Feature selection consists on the process of selecting variables that relate to the out-
come we wish to analysis, understand or predict. This process can be done with the help
of human expertise, choosing to keep certain type of data and discarding other, on the
basis of the experience of the supervisor; or automatically using an appropriate method.
Some of these methods are:
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• Wrapper method: this technique sees ML algorithms as black boxes which are given
a series of features as inputs. Upon these subset of inputs, a certain prediction
will be made, and on the basis of the performance of this prediction, the relative
usefulness of the subset of variables will be judged. The user has a high degree of
control over the method, as he is responsible for selecting the algorithms to use, the
strategy for selecting features and the performance measure of the model.

• Embedded methods; in this methods, feature extraction is performed as a part of
the training of the ML model, in which the algorithm/algorithms responsible for
executing the prediction adjust the selected features accordingly to the veracity of
these predictions.

• Filter methods: In this category, feature extraction is separate from the model itself.
They create a significance test between features and their outcome and then rank
them. The user is responsible afterwards, for selecting n number of features, based
on the performance they provide with a given model.

The main difference between all models relies on the degree of involvement of the user
in the feature extraction methodology, and the dependence or integration of the feature
extraction mechanism within the ML model itself.

2.6.4. Feature extraction

At this stage high-dimensional time series are compressed while maintaining the relevant
characteristics of the signal intact. Hence correlations and noise are the objects to be
discarded[45]. There are some preferred techniques to perform feature extraction:

• Statistics: simple to calculate and most efficient method. Mean, maximum, mini-
mum, skewness, kurtosis, peak-to-peak, root mean square,etc; these are just some
of the commonly employed statistical techniques allowing for extraction of mean-
ingful features from the signal.

• Time-Frequency domain properties: these methods convert signals in time domain
to signals in the frequency domain. These strategies enjoy a great deal of popularity
in the industry, due to their capabilities. First, it makes easier the identification of
characteristic frequencies, which are associated with faults of some components in
the WT. Second, noise reduction is also achieved, resulting in a cleaner signal for
future analysis. And third, Frequency-domain analysis can provide more compact
representation of the data,as it allows for identification of dominant frequencies
and discarding less important frequency components. This brings computational
advantages.

• Parameters or fitted time series: these are parameters obtained from fitted time se-
ries models, that describe the relationship between datapoints collected over time.
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Examples are ARIMA models[46], a technique used for forecasting that combines
autoregression, diferencing and moving average to capture temporal dependencies
in the time-series data and can help identify patterns on this data; Autocorrelation
coefficients[47], which are a measure of the similarity between one signal at dif-
ferent moments, and helps identifying structures in the data; Stochastic processes,
which are mathematical models describing the evolution of random variables over
time; and Hidden Markov Models [48], a type of stochastic process that assumes
the system being modeled as a Markov process. A Markov process is a sequence
of random variables in which the future state of the process only depends on the
current state and not any other past states.

2.6.5. Condition assessment: fault detection, diagnosis& prognosis

Following feature extraction, by revealing the relevant features from the preprocessed
data; machine learning algorithms combined with statistical techniques are utilized to
identify patterns within the data that are indicative of faults or degradation of a compo-
nent in the WT. The methods discussed in the fault detection, diagnosis and prognosis
sections fall into this category. The fault is detected and its severity is assessed, the fault
is diagnosed; meaning that estimations on the location, nature and time related issues
about the fault are generated; and lastly a prediction on the future behaviour of the fault
and a remaining useful life estimation are computed.

Typically one(or several) of the ML models explained earlier(either regression or clas-
sification based) is chosen to perform the predictory actions. This model will work based
on a dataset representing the behaviour of the WT and containing information about the
health status of it. Some examples that can result useful to understand the principles
behind the assessment of these faults involve miscorrelation or anomalous behaviour of
certain SCADA parameters. For instance, miscorrelation between wind speed and gen-
erator active power can indicate a fault in a wind turbine[49]. Miscorrelation between
generator speed and generator active power could potentially indicate a fault in a WT
generator[50]. Anomalous behaviour of temperature caused by heat transfer can serve for
identifying the trajectory of a generator fault[51].

This dataset is split into training and testing sets with typical split of 70:30 ratio in
favour of the training group. Usually unbalance will exist in the dataset as healthy data
dominates over anomalies. For that reason balancing techniques are oftentimes utilized.
Under-sampling works by removing instances in the class that overpopulates the dataset.
Although this method is prone to discarding useful data[52]. On the other hand over-
sampling adds datapoints to the minority class. In this case, overfitting can be a potential
issue. Often times, several ML models are tested to asses which one fits the best the
working environment and machinery involved. For that reason metrics are needed to
judge the performance of a model. Before discussing these models some terminology
shall be first showcased:
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• True positive (TP): this refers to a prediction of healthiness when a component was
in fact healthy. A high TP value increases the reliability of the model as ir reveals
correctly the component’s health status.

• True negative (TN): it refers to a prediction of unhealthiness when the component
was actually unhealthy. A high TN value increases the reliability of the model as
well.

• False positive(FP): a healthy prediction when in reality the instance was unhealthy

• False negative(FN): a prediction of unhealthiness when the instance was in fact
healthy.

Some of the most popular performance assessment metrics are:

• Accuracy(ACC): T P+T N
T P+T N+FP+FN Accuracy gives a measurement of how often a model

is correct in its predictions. It is oftentimes the first parameter to look at when
comparing the performance of different models.

• Recall, True positive rate(TPR) or Sensitivity: T P
T P+FN Recall is the ratio of correctly

predicted positive observations to all observations in actual class. It represents the
model’s ability to find all the positive samples. High recall means that an algorithm
returned most of the relevant results. Although ACC may describe the performance
of a model in a broad way, it does not take into account the missclasification cost,
which may be relevant in an situations where each mistake can potentially mean
great economic losses for the wind farm responsibles.

• Specificity or True negative rate(TNR): T N
T N+FP Similarly to TPR it allows to take

into account the misclassification costs.

• Precision: T P
T P+FP This metric is the ratio of correctly predicted positive observations

to the total predicted positives. In other words, it represents the model’s ability not
to label a negative sample as positive. High precision means that an algorithm
returned substantially more relevant results than irrelevant ones.

• F1: 2 ∗ Precision∗Recall
Precision+Recall F1 is the harmonic mean of precision and recall, and it tries to

find the balance between both parameters. This allows you to easily optimize for
one value or the other.

The larger ACC, TPR and TNR are, the better the performance of the model, and
hence its predictions.
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2.6.6. Decision-making and maintenance scheduling:

The last step in data-driven condition monitoring processes is to formulate insights from
the previous steps to make an informed decision on the maintenance and potentially repair
operations needed. Based on the condition assessment of the WT, maintenance personnel
can prioritize certain activities over others. This is specially important in situations in
which access to the WT is exceptionally challenging, such as in offshore operations. In
these cases being well prepared pays off, as each visit to the wind farm place, involves
great movement of resources and efforts, which inherently increases WT O&M costs.

2.6.7. Review of SCADA useful parameters for CM

In this section a table where SCADA parameters can be comprehensively overviewed de-
pending on their utility for fault detection, diagnosis or Remaining useful life estimation.
These parameters have been chosen according to available literature on the topic. To fur-
ther increase the understanding of SCADA data analysis in the context of wind turbine
condition monitoring, this literature will be reviewed, highlighting relevant aspects. In or-
der to ease the visualization of the functionality of different SCADA parameters for fault
detection, diagnosis and prognosis; table 2.1 will be set up. Additionally each parameter
will be color coded, according to the component or subsystem it is meant to asses. The
color coding works in the following way:

Generator, gearbox

In [53] a model based approach is chosen to create a fault diagnosis method from 126
operating SCADA parameters and state information recorded every 10 min. In said paper;
Active power, Wind speed, Rotated speed of gearbox, Yaw angle, Bearing temperature
of gear box, Oil temperature of gear box, Cabin Temperature and External temperature.
Trough Nonlinear Multivariate State Estimate Technique(NMSET) a normal behaviour
model of the temperature within the gearbox is constructed. By setting thresholds and
judging the variation of the temperature with respect to this thresholds, faults in gearboxes
can be identified. The approach is described as simple and very appropriate for complex
and random processes.

In Jin et al.[54] an ensemble approach is conducted in order to identify and diag-
nose faults in a Wind Turbine doubly-fed induction generators(DFIG). A model of nor-
mal behaviour of the WT is built trough a Mahalanobis reference space[55] in order to
observe deviations. The SCADA parameters used in order to build the model are: Gen-
erator output power, Average wind speed(over 30second time intervals), generator rotor
speed, generator winding temperature, generator drive-end bearing temperature, gener-
ator nondrive-end bearing temperature, temperature inside the nacelle. An interesting
approach followed in this study is the dynamic generation of the Mahalanobis space ev-
ery 3 months. This allows for a more updated and flexible assessment of the reference
operation state of the WT, and for having a model in line with the stage of life to which
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the WT belongs. The authors concluded that the model proved to be effective in diag-
nosing a specific failure before the need to repair in two different generators. Moreover,
they argued that no information on fault states was needed, and therefore it made their
approach specially useful for practical applications in health monitoring of WTs.

In Udo et al.[56] a scan over recent literature on SCADA valuable inputs for monitor-
ing of critical components such as gearbox or generator was carried out. In this analysis
Nacelle Temperature, Rotor Speed, Active power, Outdoor temperature and Gearbox oil
sump temperature were identified as useful sensor data for gearbox monitoring. Nacelle
temperature, Active power, Generator Speed and Generator stator temperature were the
valuable parameters for Generator monitoring. Following the discovered information,
the researchers in the study tried to build a healthy state of various wind turbines. They
based their methodology in four steps: Data cleaning, features selection, model process-
ing(involving training and testing) and post-processing. The underling principles behind
these processes has been already commented on at earlier section of this work. Never-
theless, it is interesting to highly some of the key aspect of each of these steps. In Data
cleaning, expert knowledge based criteria and thresholds were established, such as the
removal of instances where the power generated was zero but the wind speed wasn’t,
or instances in which one or more values lied outside the normal range. For features
selection, the team relied on literature review to understand and select the best variable
combinations required to monitor system behaviour of components such as generator and
gearbox. The selected variables were extracted form the pool described earlier, tailored
for both generator and gearbox. The chosen ones were generator bearing temperature,
for WTs generator health monitoring and gearbox bearin temeprature for gearbox health
status monitoring. Regression models were employed, specifically multiple linear regres-
sion(MLR); as a base model, and two non-linear regression models: extreme gradient
boosting(XGBoost) and long short-term memory(LSTM). Again, these algorithms were
carefully selected in accordance to the relevant scientific literature. The dataset was di-
vided into training and testing with a 70:30 ratio. Additionally K-fold cross validation
was used in order to ensure that each modeled produced was robust and accurate. K-K-
Fold cross validation is a statistical model used for estimating the performance of ML
models when making predictions. It is important to understand how it works:

• Splitting the data into K parts.

• Once data is split, one of this parts will be used to test the model and the remaining
parts for training the model.

• After achieving this task, the process is repeated but this time using a different part
for testing and the rest for training. This process is repeated until all parts have been
used for testing.

• At the end a set of results is produced from each test. By averaging these results a
more robust measure of the model’s performance is obtained.
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It is easy to assume, that this extended testing and training procedure is useful when work-
ing with small datasets. After testing each model the model’s accuracy is assessed by
comparing deviations between measured and predicted values. It s observed that LSTM
algorithm performed better when identifying fault states in the generator whereas XG-
Boost better fitted the gearbox’s behaviour. It is worth mentioning that the models were
tested without failure logs, which makes this work specially interesting for novel wind
farms without much data available. Another important conclusion derived by the authors
is the identification of non-linear models as best suited for wind turbine fault detection
and diagnosis.

A RUL estimation procedure is built by Fan et al.[57], in which a 1.5 MW WT gearbox
fault is estimated to happen in thirty days.

Another study related to RUL estimation and fault diagnosis for 1,5 MW WT gener-
ators is the one performed by Zhao et al.[58]. This study showed promising results, as it
was able to predict wind turbine generator RUL with about 80% accuracy 18 days ahead
and diagnose generator faults with 94% accuracy when they occur, just from SCADA
data and status information. The model was tested in two different wind farms in China.
The algorithm chosen for the prediction models was a SVM classifier, supported by
SMOTE[59] to work around unbalanced datasets, characteristic of SCADA data and sta-
tus logs, in which healthy or normal behaviour samples greatly overpopulate the data pool.
The reasoning behind selecting this algorithm is again an extensive literature review per-
formed by the authors. These selected SVM, KNN ANN and naive Bayesian algorithms
as the most relevant ones according to the up to date literature. They tested models using
each of these algorithms and observed that SVM performed the best. As for the selected
SCADA features, they identified the following values as the most prevalent in research
papers on the topic: wind speed, ambient temperature, rotor speed, generator rotational
speed, generator active power, generator reactive power, temperature of main bearing,
temperature of low-speed shaft and temperature of high speed shaft. Nevertheless, the
authors went a step further and pointed out that some of these relevant parameters were
closely related. Their solution consisted in combining similar features into a single feature
when these presented a Pearson correlation coefficient[60] larger than 0.98. In this way
they achieved an optimal trade off between redundancy of datapoints and maintenance of
information of original features.

34



Table 2.1. SCADA PARAMETERS FOR DIFFERENT CM PURPOSES
OF WTS, COLOR CODED BY COMPONENT OR SUBSYSTEM

Purpose Useful SCADA parameters
Fault Detection Active power, Wind speed, Rotated speed of gearbox, Yaw

angle, Bearing temperature of gear box, Oil temperature of
gear box, Cabin Temperature, External temperature, Na-
celle Temperature, Rotor Speed, Active power, Outdoor
temperature and Gearbox oil sump temperature Generator
output power, Average wind speed, generator rotor speed,
generator winding temperature, generator drive-end bearing
temperature, generator nondrive-end bearing temperature,
temperature inside the nacelle, Nacelle temperature, Active
power, Generator Speed and Generator stator temperature

Fault Diagnosis Active power, Wind speed, Rotated speed of gearbox, Yaw
angle, Bearing temperature of gear box, Oil temperature of
gear box, Cabin Temperature, External temperature Gen-
erator output power, Average wind speed, generator rotor
speed, generator winding temperature, generator drive-end
bearing temperature, generator nondrive-end bearing tem-
perature, temperature inside the nacelle, Nacelle tempera-
ture, Active power, Generator Speed and Generator stator
temperature

RUL wind speed, ambient temperature, rotor speed, generator ro-
tational speed, generator active power, generator reactive
power, temperature of main bearing, temperature of low-
speed shaft, temperature of high speed shaft
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3. DEVELOPED WORK

As a natural continuation of the work and knowledge that has been discussed until
now, a data-driven approach will be followed to try to predict the presence of a specific
type of fault within a WT. Some of the machine learning models will be utilized in order
to test their effectiveness in fault detection applications within the context of wind turbine
generation. In order to make this work more meaningful, some parameters have been
strategically chosen, to actually provide some value to the field and demonstrate certain
features of the approaches discussed up to now. These will be explained in the following
section: Description and Case Studies.

3.1. Description

During the entire work some points from the currently available technologies have been
highlighted. Now the importance given to this points will make more sense. First of all,
SCADA data will be used, due to its efficacy, demonstrated in the literature, and its use-
fulness and potential when combined with machine learning techniques. On top of this
the developed case studies will be focused on detecting faults in electrical components of
the Wind turbine as other approaches such as vibrations or acoustic emissions monitoring
have already proven to be more effective when detecting early faults in mechanical com-
ponents. Additionally, developing work with tools and data that is arguably available for
the entire wind power generation industry makes the most sense, in an intent to develop
the state of the art of the technology and further the common understanding of the topic.
Las but not least, Machine learning approaches, which have seen incredible advancements
in the last decade, will inevitably inflict a great deal of impact on the sector. Watching this
trend, using machine learning models for this type of problem, just adds more significance
to this work.

Four models were created based on the case studies provided by [56] and [61]. The
purpose of all this models was to predict generator bearing temperature of a Wind Tur-
bine with high enough accuracy to be able to detect potential incoming faults or in other
words, temperature peaks, that indicate abnormal operation of the component.Note that
his can not only indicate faults in that bearing but also other adjacent and closely cor-
related abnormalities that could have generated this unhealthy behaviour of the bearing.
The wind turbine SCADA data was extracted from a dataset provided by [62] in which
10-minute SCADA and events data from 6 Senvion MM92’s onshore wind turbines at
Kelmarsh wind farm in the UK, grouped by year from 2016 to mid-2021, were included.
Not all signals are available for the entire period but the data provided in this time peri-
ods was rich enough to serve as the foundation for the models built. The SCADA data,
which was the main source of input in this study, contained over 280 SCADA parameters
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were included in each csv file, ranging from actual 10 minute averaged sensor values, to
statistical values of interest such as minimums or maximums.

Fig. 3.1. Senvion MM92 Wind Turbine[63]

Table 3.1. SENVION MM92 SPECIFICATIONS

Rated power 2,050.0 kW
Cut-in wind speed 3.0 m/s
Rated wind speed: 12.5 m/s
Cut-out wind speed: 24.0 m/s
Rotor Diameter 92.5 m
Rotor max speed 15.0 U/min
Number of blades 3
Rotor material GFK
Gearbox type spur/planetary
Gearbox ratio 1:120
Generator Double Fed Asynchronous
Max Speed 1,800.0 U/min
Grid Frequency 50.0 Hz
Voltage 690.0 V
Onshore Yes
Offshore No

In order to look for solutions to to problems and bugs found during the development,
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several resources and internet forums such as stackoverflow, GitHub or reddit were vis-
ited. . First a Multiple linear regression model was built due to its simplicity and flexibility
when working with data. Lack of experience in this area of study, which is data science,
also inclined the balance in favour of a simple but potent method such as MLR. The basic
architecture of the model was build based on information found on the papers mentioned
earlier in this paragraph. On top of that, two other models proposed in the aforementioned
studies were also tested. These were chosen as the reference models in terms of perfor-
mance becasue they were the top performance in the other studies. The results found in
this work, don’t quite match the conclusions found in udo and santolamazza, but this will
be commented on further in the results section. Finally, as an additioonal contribution to
the models already tested in other studies, and to provide further novelty to this work, a
Deep Neural Netwrok was also built.

3.2. Case Studies

In this section different models will be ‘resented for predicting generaots bearing temepra-
ture levels and potentially setting thresholds for alarm triggering.

3.2.1. MLR model

The code was build intending to create a learning pipeline that predicts the temperature of
generator bearings in a wind turbine based on several features. The features were selected
based on relevant literature review, mainly from the aforementioned reference papers that
had already used a similar approach. The model was build as follows.

1. Importing libraries and packages: Various libraries are imported such as pan-
das, numpy, matplotlib, sklearn and scipy to provide necessary functions for data
manipulation, visualization, and machine learning.

2. Defining wind turbines to be analyzed and file paths: definiiton of which turbine
to analyze. Each turbine has its own data stored in separate CSV files for different
years.

3. Defining normal ranges for the features: This is done for data cleaning purposes.
Any data point that falls outside of these specified ranges will be considered an
outlier and removed. This part was done based on datasheet of the wind turbine and
knowledge based input from literature.

4. Reading and concatenating all CSV files: The code reads all the CSV files cor-
responding to different years for a specific turbine and concatenates them into a
single dataframe. This is done because data is splitted and it is desirable to use all
the available data to train the model.
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5. Data Cleaning: At this step, missing values are dropped and data points are filtered
based on the specified normal ranges. The Power is filtered to be above 0 and Wind
speed is filtered to be above 3 m/s, assuming a cut-in wind speed of 3 m/s (i.e., the
minimum speed at which the turbine will generate power).

6. Data Visualization: The script then plots the wind turbine power curve, before and
after data cleaning, showing power vs wind speed. This gives a visual representa-
tion of the turbine’s performance.

7. Preprocessing for Machine Learning: The script then divides the data into fea-
tures (X) and target (y) for machine learning. The target is the ’Generator bearing
rear temperature’ that we want to predict, and the features are the other columns
that have been used as inputs.

8. Train-Test Split: The data is then split into a training set (70% of the data) and
a test set (30% of the data). The training set is used to train the machine learning
model, and the test set is used to evaluate its performance.

9. Outlier detection and removal: Outliers are detected and removed from the train-
ing data based on the Mahalanobis distance. The method removes top 10% of
outliers most deviated from the mean of features included in the equation. In this
case power and wind were the only features included.

10. Second data Visualization: After outliers removal, the wind turbine power curve
is plotted again. This is to visualize the effect of the cleaning and outliers removal.
This is plotted on top of the previous curve to clearly see the effect of the cleaning
procedure.

11. Correlations plot : This part plots the relationship between each of the inputs and
the output temperature. It provides both a scatterplot and the Pearson, Spearman,
and Kendall correlation coefficients to understand how each input feature is related
to the output.

12. Data Scaling: The features are then standardized (mean = 0, standard deviation =
1) using StandardScaler. This is done because the features are measured in different
units, and standardizing them allows the model to more easily find patterns.

13. Model Training: A linear regression model is trained on the scaled training data.
The model tries to find a linear relationship between the features and the target.

14. Cross-Validation: Cross-validation is performed on the training data to get a better
estimate of the model’s performance. It splits the training data into several parts,
trains the model on some parts and tests it on the remaining parts. This process is
repeated several times with different parts used for training and testing.
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15. Model testing : The trained model is used to predict the output for both the training
and test sets. The performance of the model is evaluated using various metrics in-
cluding R2 score, Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE).

16. Visualization of model predictions: The actual vs predicted generator tempera-
tures for the test set are plotted over time.

17. Control Chart (Deviations Plot): The deviations of the predicted values from the
actual values are calculated and plotted over time. The Upper Control Limit (UCL)
and Lower Control Limit (LCL), which are defined as three standard deviations
away from the mean, are also plotted.

18. Model testing on new data: A function is defined to pre-process new data (in this
case, from a different turbine) in the same way as the original data. The prepro-
cessed data is then used to test the trained model.

This process can be easy visualized in the flow diagram in Fig..3.3.

In summary, this code builds a multiple linear regression model to predict the genera-
tor bearing temperature of a wind turbine based on several other parameters. The model’s
performance is evaluated, and the predictions are visualized on a control chart to help
detect potential faults.

The model predicts the generator bearing rear temperature (in ºC) based on several pa-
rameters including nacelle temperature, power, rotor speed, stator temperature, and wind
speed. If a fault or abnormal condition occurs in the bearing, it often results in an increase
in friction and hence an increase in temperature. Therefore, abnormal temperatures can
be an indication of a possible fault in the bearing.

After predicting the temperatures, the model calculates the deviations of the actual
temperatures from the predicted ones. These deviations are then used to create a control
chart. A control chart is a useful tool for monitoring the quality of a process, and it can
be used here to monitor the health of the wind turbine generator.

The control chart includes a central line representing the average of the deviations,
and two control limits: the Upper Control Limit (UCL) and the Lower Control Limit
(LCL). These are typically set at the mean ± 3 standard deviations of the deviations. If
the deviations of the actual temperatures from the predicted ones stay within these limits,
it means the generator bearing is operating under normal conditions. But if the deviations
exceed the UCL or fall below the LCL, it means there is an abnormal condition, which
might be due to a fault in the bearing.

In summary, by continuously monitoring the deviations and whether they stay within
the control limits,it is possible to identify potential bearing faults. When an out-of-control
point (a point outside of the UCL or LCL) is detected, an alarm could be triggered for
further investigation or maintenance. In fact, in the code included in the appendix a simple
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mechanism for printing dates of potential faults is implemented. In this mechanism the
top 1% of most deviated predictions are displayed to check if a fault in fact occurred or
not. This method is not accurate nor really studied and is meant to just serve as base for a
more complex method. It’s also worth mentioning that this method doesn’t pinpoint what
kind of fault has occurred, only that an abnormal condition likely exists. Other diagnostic
measures would be needed to determine the exact type and location of the fault.

3.2.2. XGBoost model

1. Outlier Filtering: In this case and all the following built ML algorithms, Mana-
halobis distance was calculated based on all input features. This seemed to have
somewhat of a positive effect on the testing results, specially in the XGBoost algo-
rithm. The range of outliers defined was still kept at 10%.

2. XGBoost Model Definition: In the new implementation, an XGBoost Regressor
model is used for prediction instead of a Multiple Linear Regression model. XG-
Boost is a gradient boosting algorithm that can model complex non-linear relation-
ships.

3. Hyperparameter Grid Definition: A grid of hyperparameters for the XGBoost
model is defined. This grid includes parameters such as the learning rate (‘eta‘),
maximum depth of the trees (‘max_depth‘), number of estimators (‘n_estimators‘),
minimum sum of weights needed in a child (‘min_child_
weight‘), subsample ratio of the training instances (‘subsample‘), and ratio of col-
umn sampling (‘colsample_bytree‘). The performance of the XGBoost model can
significantly depend on the tuning of these hyperparameters.

4. Grid Search Cross Validation: The GridSearchCV method is used for finding the
best hyperparameters for the XGBoost model. This method fits the model with
every combination of hyperparameters defined in the grid and chooses the com-
bination that provides the best performance, as measured by a specified scoring
metric.

5. Model Training with Optimal Parameters: Once the optimal hyperparameters
are obtained via GridSearchCV, the XGBoost model is re-defined using these pa-
rameters and then trained using the training data.

An important remark here is that due to hardware constrains were calculated
on just one year of wind turbine operation, and just one turbine. Specifically
it was 2016 of WT6. This hyperparameters are optimized taking into account
data size and features as well, so perhaps the results of this model could have
been improved by running the optimization method in every calculation.

The obtained hyperparameters are defined in Fig.3.2
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Fig. 3.2. Hyperparameters found from optimization process

6. Performance Metrics Calculation: Performance of the model is assessed using
R-squared, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE), for both the training and testing sets.

7. Control Chart for Deviations: Again, a control chart for deviations between the
actual and predicted values is plotted together with the Upper Control Limit (UCL)
and Lower Control Limit (LCL).

The flow diagram in this case is outline in Fig.3.4.

3.2.3. LSTM model

Similarly as in the XGBoost case, just the unique steps of this model will be outlined, as
the majority of the process remains the same.

1. No Manahalobis filtering: For this algorithm no improvement was noticed when
applying this type of data filtering, neither to power curve components nor to all
inputs. Therefore it was skipped.

2. Reshape data for LSTM: after standardizing the data reshape the data to a 3D
array to fit the input requirement of the LSTM model.

3. Define LSTM model: Define the LSTM model using Keras. The model consists
of multiple LSTM layers and a Dense layer at the end. The hyperaparemeters used
for the the LSTM model were chose based on advice from the literature review
performed in the reference papers:
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Hyperparameter Description
Number of LSTM Lay-
ers

There are three LSTM layers in the model.

Number of Neurons in
Each Layer

The first and second LSTM layers have 50 neurons each,
the third LSTM layer has 25 neurons.

Activation Function The activation function used in the LSTM layers is the Rec-
tified Linear Unit (ReLU) function.

Return Sequences For the first two LSTM layers, return sequences is set to
true. For the last LSTM layer, the return sequences is set to
false.

Optimizer The optimizer used for training the network is Adam.
Loss Function The loss function used is Mean Squared Error.
Batch Size The batch size in the fit function is 5. This is the number of

samples per gradient update.
Epochs The number of epochs is set to 5.
Validation Split During training, 20% of the data is used as the validation

data.
Early Stopping Monitor Early stopping is implemented with monitoring on the vali-

dation loss.
Early Stopping Mode The mode is set to ’min’, which means training will stop

when the quantity monitored has stopped decreasing.
Early Stopping Pa-
tience

The patience is set to 10, which is the number of epochs
with no improvement after which training is stopped.

Table 3.2. HYPERPARAMETERS OF THE LSTM MODEL

3.2.4. ANN model

Sure, here is the list with titles for each step:

1. Import Libraries and Modules: In this case Manahalobis distance is neither used
as it didn’t serve to improve the performance metrics of the model. At least not
with the model hyperparameters used.

2. Define Neural Network Model: Define the structure of the deep neural network
model using the Keras Sequential API. The model consists of multiple dense (fully
connected) layers with dropout for regularization. The number of neurons and acti-
vation functions are chosen based on relevant literature and hardware constraints.

3. Compile and Train Model: Compile the model with mean squared error as the
loss function and Adam as the optimizer, then train the model on the training data
for a certain number of epochs.
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(a) MLR model (b) XGBoost model

Fig. 3.3. Flow diagrams for case-studies of machine learning models_1
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(a) LSTM model (b) ANN model

Fig. 3.4. Flow diagrams for case-studies of machine learning models_2
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4. RESULTS

4.0.1. Power curve

The data cleaning section in all case studies played a major role in the predictive ability
of the ML models. Two separate procedures were applied to the the models. First a
knowledge-base normal range definition was done for the input values of the SCADA
parameters. Every data-point outside of this ranges was removed. The cleaned power
curve after this preliminary cleaning is presented in Fig.4.2.b. The ranges were defined
on the basis of the data-sheet of the wind turbine and literature review about normal range
definition in machine learning models for this purposes. Additionally a cut in wind speed
of 3m/s was defined and instances were power was 0 or missing values were preset, were
eliminated form the dataset.

Fig. 4.1. Normal ranges defined for ML models

Once this cleaning was completed, some of the Models were further filtered based on
the Manahalobis distance method described in the reference paper. In this Method a set of
multidimensional data is assumed to follow a Gaussian distributions and outliers deviated
a certain distance from the normal are eliminated. The threshold for elimination was set
at 10% for the MLR and the XGBoost models. This percentage was selected based on
trial and error, trying to look for better performance parameters. The LSTM and ANN
models didn’t see an improvement with this filtering. Additionally, this filtering was just
performed on the training data, applying it on testing data would not be of interest, as
some of this removed outliers could be potential faults. A visual representation of the
effect of this filtering can be appreciated on Fig.4.2.c & d.
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(a) Power curve of WT 1 (b) Power curve of WT 6

(c) Power curve of WT 1 after preliminary cleaning
and filtering

(d) Power curve of WT 6 after preliminary cleaning
and filtering

Fig. 4.2. Data cleaning, power curve and correlation analysis

Table 4.1. CLEANING PERFORMANCE MLR

Wind
Turbine

Before
cleaning

After
cleaning

Cleaning
Reduction

Training
data after
cleaning

Training
data after
filtering

Filtering
Reduction

WT1 288864 216250 25.14 % 151375 136237 10.0 %
WT2 288864 219164 24.13 % 153414 138072 10.0 %
WT3 288864 219160 24.13 % 153412 138070 10.0 %
WT4 288864 220208 23.77 % 154145 138730 10.0 %
WT5 288864 216250 25.14 % 151375.0 136237 10.0 %
WT6 288864 214022 25.91 % 149815 134833 10.0 %

4.0.2. Correlation parameters

Correlation is a statistical technique that can show whether and how strongly pairs of
variables are related or correlated. When we speak about correlation, usually we refer
to Pearson’s correlation. However, there are other measures of correlation, including
Spearman’s rank correlation and Kendall’s Tau, that can reveal other insights on the data.
Here is a short overview of the parameters:

Pearson correlation is a measure of the linear relationship between two continuous
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random variables. It can take a range of values from -1 to 1, where -1 indicates a perfect
negative linear relationship, 0 indicates no linear relationship, and 1 indicates a perfect
positive linear relationship. Pearson correlation assumes that the data is normally dis-
tributed and the relationship between the variables is linear. It also assumes that the
variances of the individual variables are similar (homoscedasticity)[64].

Unlike the Pearson correlation, Spearman’s correlation does not assume that both
datasets are normally distributed. Instead, it measures the strength and direction of the
monotonic relationship between two ranked variables. This means it looks at how changes
in one variable are associated with changes in another, but it doesn’t necessarily have to
be a linear relationship. The correlation ranges from -1 to 1, with -1 indicating a perfect
negative monotonic relationship, 0 indicating no monotonic relationship, and 1 indicating
a perfect positive monotonic relationship.[65]

Like Spearman’s rank correlation, Kendall’s Tau is a non-parametric measure of re-
lationships between columns of ranked data. The Tau correlation coefficient returns a
value of 0 to 1, where 0 indicates that the data are uncorrelated and 1 indicates that the
data are perfectly monotonically correlated. Kendall’s Tau has been considered as a better
measure of correlation in many cases as it’s good at dealing with small datasets and it’s
better at handling ties (i.e., when the ranks for both variables are the same) compared to
Spearman’s[66].

Fig. 4.3. Correlation input-output WT6 with correlation parameters
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Fig. 4.4. Correlation input-output WT1 with correlation parameters

For each wind Turbine slightly different correlation parameters have been obtained,
although they are similar enough to be able to represent the overall correlation input-
output with just one wind turbine case. A "healthy" wind turbine, WT6(on the basis of
general good model performance)has been chosen to represent said parameters. Next,
each of the correlations will be commented.

Nacelle temperature vs. Generator bearing rear temperature: Pearson: 0.73:
This indicates a strong positive linear relationship between the two variables. Spearman:
0.77: This indicates a strong positive monotonic relationship, suggesting that as one value
increases, so does the other, but not necessarily at a constant rate. Kendall: 0.60: This
also indicates a positive monotonic relationship, similar to the Spearman’s correlation,
but Kendall’s Tau is considered more robust to small samples sizes and non-parametric
assumptions.

Power vs. Generator bearing rear temperature: Pearson: -0.21, Spearman: -0.28,
Kendall: -0.19: All three coefficients are negative, suggesting a weak inverse relationship
between Power and Generator bearing rear temperature. However, the strength of the
correlation is not strong.

Rotor speed vs. Generator bearing rear temperature: Pearson: -0.24, Spearman:
-0.26, Kendall: -0.18: Similar to the Power correlation, these also suggest a weak inverse
relationship. As the Rotor speed increases, the Generator bearing rear temperature tends
to decrease and vice versa.

Stator temperature 1 vs. Generator bearing rear temperature: Pearson: 0.36,
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Spearman: 0.31, Kendall: 0.22: These show a weak to moderate positive relationship.
As the Stator temperature increases, the Generator bearing rear temperature also tends to
increase.

Wind speed vs. Generator bearing rear temperature: Pearson: -0.18, Spearman:
-0.25, Kendall: -0.17: These values suggest a weak negative correlation. As the Wind
speed increases, the Generator bearing rear temperature tends to decrease slightly.

4.0.3. Results

Table 4.2. WIND TURBINE 1

ML model R-squared RMSE MAE MAPE
MLR 0.5571 2.6685 1.5502 3.7325
XGBoost 0.5888 2.5713 1.4228 3.4101
LSTM 0.54908 2.6928 1.6799 4.1342
DNN 0.5452 2.7043 1.4874 3.5565

Table 4.3. WIND TURBINE 2

ML model R-squared RMSE MAE MAPE
MLR 0.7944 1.5831 1.0691 2.7027
XGBoost 0.8150 1.5017 0.9648 2.4269
LSTM 0.8075 1.5318 0.9822 2.4710
DNN 0.7518 1.7395 1.1545 2.8868

Table 4.4. WIND TURBINE 3

ML model R-squared RMSE MAE MAPE
MLR 0.7912 1.6588 1.1869 2.9787
XGBoost 0.8229 1.5277 1.02487 2.5572
LSTM 0.7194 1.9230 1.5178 3.8500
DNN 0.7508 1.8122 1.2282 3.0203

Table 4.5. WIND TURBINE 4

ML model R-squared RMSE MAE MAPE
MLR 0.6208 2.4661 1.3691 3.2657
XGBoost 0.6375 2.4111 1.3001 3.0873
LSTM 0.5870 2.5736 1.5438 3.7347
DNN 0.5224 2.7677 1.6099 3.7769
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(a) Actual vs Predicted values WT 6 (b) Actual vs Predicted values WT 6

(c) Deviations plot WT 1 (d) Deviations plot WT 6

MLR Algorithm,

Fig. 4.5. Actual vs Predicted Temperatures, together with deviations for WT1 and WT6

Table 4.6. WIND TURBINE 5

ML model R-squared RMSE MAE MAPE
MLR 0.7689 1.6691 1.1830 3.0150
XGBoost 0.7958 1.5688 1.0838 2.7528
LSTM 0.7870 1.6024 1.1055 2.8038
DNN 0.7263 1.8166 1.2913 3.2424

Table 4.7. WIND TURBINE 6

ML model R-squared RMSE MAE MAPE
MLR 0.7425 1.9141 1.3201 3.2180
XGBoost 0.7649 1.8291 1.2385 3.007
LSTM 0.7451 1.9045 1.2587 3.0387
DNN 0.7080 2.0385 1.3769 3.3806

4.0.4. MLR Results

[H]
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From the performance of the Multiple Linear Regression (MLR) model on each met-
ric:

1. R-squared: This is the proportion of the variance in the dependent variable that
is predictable from the independent variables. The R-squared value for the MLR
model is relatively high for all the wind turbines, but it is consistently lower than the
R-squared value obtained from the XGBoost model. This suggests that while MLR
is capable of capturing a good amount of variance in the data, it is not as effective
as the XGBoost model.

2. RMSE: This is a measure of the differences between the values predicted by a
model and the values observed. The Root Mean Squared Error for the MLR model
is generally higher than that of the XGBoost model. A higher RMSE value means
the model’s predictions are less accurate. Therefore, the MLR model is less accurate
than the XGBoost model in predicting wind turbine outputs.

3. MAE: This is the average magnitude of the errors in a set of predictions, without
considering their direction. The Mean Absolute Error for the MLR model is also
higher than the XGBoost model across all wind turbines. This suggests that on
average, the absolute prediction errors of the MLR model are larger, pointing to
less accuracy in its predictions.

4. MAPE: This calculates the average of the absolute percentage differences between
the predicted and actual values. The Mean Absolute Percentage Error is again
higher for the MLR model than the XGBoost model. This means that, in percentage
terms, the MLR model’s predictions are less accurate.

Overall, while the MLR model demonstrates a decent level of performance in predict-
ing wind turbine output, it is consistently outperformed by the XGBoost model across
all metrics and wind turbines. It is still a viable model, but there may be complex re-
lationships and patterns in the data that MLR, being a linear model, cannot capture as
effectively as a more complex model like XGBoost.

4.0.5. XGBoost Results

Focusing specifically on the results for the XGBoost model, let’s analyze each metric:

1. R-squared: A higher R-squared indicates a better fit of the model to the data. For
all wind turbines, XGBoost has the highest R-squared, suggesting it is the best model for
capturing the variance in the data.

2. RMSE: . A lower RMSE indicates a better fit of the model. Again, for all wind
turbines, XGBoost has the lowest RMSE, meaning it was the most accurate model.
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3. MAE: . A lower MAE indicates a better fit of the model. Yet again, XGBoost
performed the best, with the lowest MAE across all wind turbines.

4. MAPE: . This metric is particularly useful when you want to understand the
prediction error in percentage terms. Similar to the other metrics, a lower MAPE suggests
a better fit of the model. XGBoost consistently yielded the lowest MAPE for all turbines,
implying it was the most accurate model in percentage terms as well.

In conclusion, the XGBoost model performed the best among all the models eval-
uated for predicting wind turbine output, regardless of the turbine. Its performance was
consistently superior across all evaluation metrics (R-squared, RMSE, MAE, and MAPE),
implying that XGBoost was able to capture the underlying patterns in the wind turbine
data more effectively than the other models. This would suggest that for further work in
this area, the XGBoost model could be prioritized over the others for wind turbine output
prediction. On top of that some hyperparameters could be even further optimized for the
specific data and data size, as explained in the case study description of the XGBoost
model.

(a) Actual vs Predicted values WT 6 (b) Actual vs Predicted values WT 6

(c) Deviations plot WT 1 (d) Deviations plot WT 6

XGBoost Algorithm,

Fig. 4.6. Actual vs Predicted Temperatures, together with deviations for WT1 and WT6

4.0.6. LSTM Results

The Long Short-Term Memory (LSTM) model is a type of recurrent neural network that
is commonly used in the prediction of time series data. Let’s analyze its performance:
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1. R-squared: The R-squared value for the LSTM model varies across the different
wind turbines. In some cases, such as for Wind Turbine 2, its performance is close
to the XGBoost model. However, for others like Wind Turbine 3, its performance
is significantly lower. This indicates that LSTM is able to capture a fair amount of
the variance in the data, but not consistently across all turbines.

2. RMSE: The Root Mean Squared Error for the LSTM model is generally higher
than that for the XGBoost model across all wind turbines, which indicates that the
predictions of the LSTM model are less accurate than those of the XGBoost model.

3. MAE: The Mean Absolute Error for the LSTM model is also typically higher than
that of the XGBoost model. This suggests that on average, the absolute predic-
tion errors of the LSTM model are larger, which again points to lower prediction
accuracy.

4. MAPE: The Mean Absolute Percentage Error of the LSTM model is also higher
than that of the XGBoost model. This means that, in percentage terms, the LSTM
model’s predictions are less accurate.

Overall, the LSTM model’s performance is inconsistent and generally less accurate
than the XGBoost model across all the metrics. This may be due to the LSTM model’s
sensitivity to the sequence of the data and the potentially non-sequential nature of the
dataset. Additionally, the LSTM model may require more complex and careful parameter
tuning, or it may need a larger dataset to effectively learn and make predictions. Although
the model hyperparameters were based on the suggestions of the reference papers, perhaps
this should be further investigated for the wind turbines studied in this work, as their
LSTM models were the best performers in many areas.
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(a) Actual vs Predicted values WT 6 (b) Actual vs Predicted values WT 6

(c) Deviations plot WT 1 (d) Deviations plot WT 6

LSTM Algorithm,

Fig. 4.7. Actual vs Predicted Temperatures, together with deviations for WT1 and WT6

4.0.7. DNN Results

A Deep Neural Network (DNN) is a type of Artificial Neural Network with multiple layers
between the input and output layers. They can model complex patterns and systems,
making them powerful tools for predictions. Let’s analyze its performance on the given
dataset:

1. R-squared: The R-squared values for the DNN model are consistently lower than
those for the XGBoost model across all the wind turbines. The highest R-squared
value for DNN is 0.7518 (Wind Turbine 2), while the lowest is 0.5224 (Wind Tur-
bine 4). This indicates that DNN model is not capturing as much of the variance in
the data as the XGBoost model does.

2. RMSE: The Root Mean Squared Error (RMSE) values for the DNN model are
generally higher than those for the XGBoost model, which suggests that the DNN
model’s predictions are less accurate.

3. MAE: Similarly, the Mean Absolute Error (MAE) for the DNN model is typically
higher than that of the XGBoost model across all the wind turbines. This indicates
that the DNN model’s predictions, on average, deviate more from the actual values.
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(a) Actual vs Predicted values WT 6 (b) Actual vs Predicted values WT 6

(c) Deviations plot WT 1 (d) Deviations plot WT 6

DNN Algorithm,

Fig. 4.8. Actual vs Predicted Temperatures, together with deviations for WT1 and WT6

4. MAPE: The Mean Absolute Percentage Error (MAPE) values of the DNN model
are also higher than those of the XGBoost model, signifying that the DNN model’s
predictions are less accurate in terms of percentages.

In summary, the DNN model’s performance, as measured by these metrics, is gen-
erally weaker than the XGBoost model across all the wind turbines. This could be due
to various factors, such as the architecture of the DNN, the optimization method used,
the lack of sufficient training data, or the presence of noisy data. Despite their ability to
model complex patterns, DNN models require careful design, tuning, and sufficient data
to achieve high performance. Due to inexperience in working with machine learning mod-
els, proper model tuning have most likely played the major role in the underpefromace of
this model.

4.0.8. Interesting points from the Case Studies

Linearity of data over time

An interesting pattern identified when working with the models, was the decrease in
model performance as more years of wind turbine operation were added into the machine
learning dataset. To exemplify this, data for WT 3 is displayed in Table4.8. It can be
appreciated that performance is kept roughly constant in the first 2 years of operation and
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flattens in the following years , with a slight upturn in year 6. The trend can be clearly
appreciated in Fig. 4.9a. This pattern is followed by all wind turbines and suggests that
the temperature behaviour of the WT generator’s bearing presents a high linear correlation
with the inputs used in the model, and said linearity sees a drop with consecutive years
until year 6. This fact could result potentially useful in formulating new approaches to
condition monitoring in alike components in WT. An adaptable formulation that adjusts
its hyperparmeters and boundaries accordingly to the operation time of the WT could
present noticeable advantages in predictive ability.

This could be analogous to the "Bathtub curve" described in section "Failure statistics"
in this work. This idea proposes that a wind turbine does follow a bathtub curve in terms
of its likelihood of failure over time. The likelihood of failure consists of three periods:
an initial period of high failure rate in the first 2-3 years of operation (infant mortality),
a period of drop-off and constant failure rate (useful life) up to year 6 , a peak again in
failures around this year and again a period of decreased and constant failure rate from
that point on (wear-out).

It seems that the R-squared value follows a direct relation with the failure rate de-
scribed by the bathtub curve. While the R-squared and hence the linearity between inputs
and bearings temperature, is high in the first years, the failure rate is high too. Both lin-
earity and failure rate drop off in the following years and around year 6 they seem to
spike up again. As mentioned before, a monitoring approach could be benefited from this
correlation.

Table 4.8. WIND TURBINE 3, MLR ALGORITHM

DATE R-squared RMSE MAE MAPE
2016 - 2017 0.8586 1.1710 0.9516 2.3639
2017 - 2018 0.8554 1.2763 1.0266 2.6052
2018 - 2019 0.8084 1.6138 1.1749 2.9358
2019 - 2020 0.7811 1.7038 1.2050 2.9939
2020 - 2021 0.7842 1.6777 1.1892 2.9716
2021 - 2022 0.7912 1.6588 1.1869 2.9787
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(a) R-squared evolution of generator’s bearing
WT6 (b) Failure rate per year for Generator

Model Extrapolation

One of the ideas that came to mind during the development of the project, was to try
to see how well the trained models extrapolated to different wind turbines of the same
characteristics. For that reason, a considered healthy specimen (WT6)was used to train
a machine learning model and then test its predictive abilities on a highly faulty wind
turbine. This resulted in a model that very poorly performed on the new data. The perfor-
mance metrics indicated that the model was not even able to predict the variation in actual
bearing temperatures with 50% accuracy. This result was slightly worse than the model
trained on WT1 data, which got an R-squared value of 0.5571. It must be said that the
training data set and testing data set was heavily unbalanced, as the training set was cons
and corrective measures for this issue would have possibly improved the performance of
this strategy. Despite this several conclusions can be yielded from this result:

• Although the performance was slightly lower, the reduction was small enough to
consider the extrapolated model, of usefulness and relevancy for condition moni-
toring purposes of other wind turbines of similar characteristics.

• Perhaps the linearity of WT6 is higher than the one presented in WT1. This can
play a crucial role in the results obtained with this model, and the consequent un-
derperformance. Moreover, this approach was tested for other wind turbine pairs
such as WT6 and WT5 and the model trained with WT6 data performed consider-
ably good with WT5. There was a decrease in performance but just of 0.03 points
in R-squared value. On top of that, the model saw even further improvements when
testing just the first years of operation of the WTs and consecutive detriment in per-
formance when increasing the lifespan of the WT. This could suggest the special
usefulness of these models to predict unknown data on relatively new systems, in
terms of time in operation time.

• After testing, this approach with other models capable of predicting better in non-
linear environments, the reduction of performance was significantly lower, suggest-
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ing that in general WT bearing temperature behaviour follows a non-linear correla-
tion with the input variables.

- usefulness of Manahalobis distance filtering - By apply Manahalobis distance filter-
ing on on-linear algorithms such as LSTM a slight improvement on the performance of
the model was appreciated, although it wasn’t very substantial: from 0.79927 in the non
filtered model to 0.80756 in the filtered data with 10% threshold.

Table 4.9. PERFORMANCE OF MODEL WT6 ON WT1

ML model R-squared RMSE MAE MAPE
MLR 0.4876 2.8846 1.8792 4.5754

Comparison with reference papers

The built models underperfomed in all wind turbines the case studies described in
the reference papers. This could be due to several reasons. First, is models fine-tuning
and hyperamarameters definition. This has been commented already in the results section
but it is probably one of the main reasons behind this lower metrics. Their models have
been optimized to work with their specific dataset and wind turbine parameters while
in the case of this case study, the tuning method has been mainly done doing literature
review and in the case of XGBoost with limited hyperparameter optimization. The second
reason could be the intrinsic character of the wind turbine behaviour. A more "unhealthy"
data set from wind turbines presenting more faults, would definitely worsen the predictive
results of these ML models, whose essence relies on modeling healthy behaviour to detect
outliers. The third, but not least important reason, could be data cleaning. Although the
defined normal ranges were defined based on available data sheet of the wind turbine
and careful research of usual working parameters in the industry, maybe this ranges were
wrongly estimated, and they were to wide. On top of this, the Manahalobis distance
filtering, wasn’t found to be very useful in the case studies, whereas it plays a major role
in the reference papers. It is possible that the distance filtering was wrongly applied while
building the model. A sign that gives more weight to this idea is the filtered power curve
plots yielded by the models, which still presents outliers.
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5. CONCLUSION AND FUTURE LINES OF INVESTIGATION

5.0.1. Closing Statement

This work, has achieved its goal to demonstrate that even with limited resources and
very little experience effective condition assessment techniques for wind turbines can be
set up in place. Some interesting point have been discussed such as linearity of typical
input-output datasets in the context of wind turbines and effectiveness of machine learning
models in combination with SCADA data. The developed models were able to predict
with up to 80% accuracy the temperatures of a specific component, which seems quite
impressive considering the described limitations. Furthermore the trained models also
performed relatively well in new, unseen data from other wind turbines. This shows the
value of these approach for early and new wind farms, without much data at their disposal.
More advanced research and further commitment to develop complex and detailed models
for wind turbines can mean the first definitive step for the establishment of renewable
technologies in today’s world.

SCADA data condition monitoring approaches could become the leading ones in the
following years. Although it seems that other technologies such as vibrations or acoustic
monitoring present meaningful advantages in terms of capabilities for early detection and
accurate diagnosis of mechanical faults, machine learning models could reveal uncovered
ways to improve SCADA data performance, up to a comparable level with the other tech-
nologies. This would definitely aid the adoption of green energies in modern economies
and help build a more sustainable future for the upcoming generations.

5.0.2. Future lines of investigation:

To start, changes in the done work will be discussed. Many things could have been im-
proved in the process of building the models. Some of them have been already discussed
in the description and results of the case studies.

1. First, the preliminary cleaning could have been further improved, by investigating
the normal and expected working parameters of the studied Wind Turbines.

2. Second further research on Manahalobis distance filtering and even changing the
model completely could improve the performance of all the models. After filtering
for 10% of outliers in the wind speed-power input pair, the curve still looks slightly
scattered and with many outliers outside of the main cluster. Perhaps the data don’t
follow a normal Gaussian distribution and other filtering manners could be better
employed for this cases.
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3. Despite the encouraging performance of the XGBoost model, there’s room for fur-
ther refinement. More complex or different types of models, such as ensemble
learning or reinforcement learning, could be explored to see if they can further im-
prove the prediction accuracy. Additionally, fine-tuning of hyperparameters, using
techniques like GridSearch or RandomSearch, might improve the models’ perfor-
mance. This point alone, is believed to be responsible for most of the deviations
between the references studies and the developed case studies.

4. The current models make predictions based on the provided dataset, but there may
be other, unexplored variables that could contribute to the model’s effectiveness. In-
vestigation into additional features, such as weather conditions, turbine operational
history, and load demand, might enhance the model’s ability to predict bearing tem-
perature accurately. Effective Feature engineering could uncover the best possible
input parameters for optimal predictive performance.

In terms of improvements and other lines of investigation outside of the current mod-
els, the following could be implemented:

• Adding more weight to certain environmental SCADA parameters in the input
datasets of the ML models, accordingly to the location of the studied wind farms.

• The models developed in this project have been tested on specific wind turbines. In-
vestigating how these models perform on a broader range of wind turbines, possibly
from different manufacturers or under varying operating conditions, could improve
their scalability and generalization.

• While predicting the bearing temperature is useful, predicting faults directly could
be even more valuable for preventative maintenance. Further research could focus
on identifying patterns that precede faults, enabling the development of models that
can predict faults before they occur.

• Taking advantage of higher resolution SCADA data(5min, 10s, 1s, 100HZ...). This
could potentially resolve the gap between other condition monitoring techniques in
terms of capability for early fault detection.

• Combining SCADA data with other data sources such as vibration, current signa-
ture analysis. This approach has already been explored in the field, and promising
performance has been discovered. By combining the features from all these tech-
nologies, more robust, reliable and adaptable models can be built.

By following these or related lines of investigation, we can continue to refine and
expand the application of ML for wind turbine condition monitoring, potentially con-
tributing significantly to the efficiency and sustainability of wind energy production.
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6. SOCIOECONOMIC IMPACT

The application of ML models for condition monitoring of wind turbines can have
significant socioeconomic impacts.

• Job Creation: The development, implementation, and maintenance of these ML
models require skilled labor, potentially leading to the creation of high-quality jobs
in data science, machine learning, and renewable energy sectors.

• Cost Efficiency: Predictive maintenance, enabled by these models, can lead to
significant cost savings. By predicting faults before they occur, costly repairs or
replacements can be avoided, and the downtime of turbines can be minimized.

• Energy Security and Sustainability: Improving the efficiency and reliability of
wind turbines contributes to a more resilient and sustainable energy infrastructure.
This aligns with global goals of transitioning towards renewable energy and can
strengthen energy security in many regions. By increasing the financial competi-
tiveness of wind power energy generation, green energy overtake could accelerate
significantly.

• SCADA data revaluation : From all the condition monitoring approaches dis-
cussed earlier, SCADA data could potentially stand out as the most relevant one
of them. If further research proofed that reliability and accuracy of SCADA data
was good enough to serve as the go to health level monitoring technique, significant
costs and complexity could be saved.

• Machine Learning definitive incorporation into the industry: with the current
boom of large language models and intelligent and compute-efficient IA systems,
it would be wise to adopt this technology and its features into this area of study as
soon as possible. Data rich dataset such as SCADA could be the perfect comple-
mentary piece for this technologies.

6.1. Budget

The budget for implementing ML models in wind turbine condition monitoring can vary
significantly based on the specific scope and requirements. Major cost components could
include:

Data Acquisition and Preparation: This involves the collection, cleaning, and pre-
processing of data from the wind turbines. The cost here would depend on whether new
sensors need to be installed, or existing data can be used. As mentioned previously,
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SCADA systems are typically installed in every wind turbine installed nowadays, there-
fore the costs from the data acquisition point of view are practically negligible.

Model Development and Validation: This includes the cost of the data scientists and
engineers working on the model, computational resources, and any software licenses re-
quired. For the models proposed in the developed case studies, not many resources would
be needed. A small teams of Data scientists or engineers familiar with this type of work
could easily take on the task of building, managing and fine-tuning models capable of
performing the tasks described. Moreover, a team centered on this task solely, could eas-
ily implement some of the features described in the "future lines of investigation" section
and achieve greater results. Expenses would mainly depend on the typical salaries of the
country where wind turbines would be deployed and the expertise of the personnel. More-
over, this task could be done remotely, and personnel could be working from anywhere in
the world, thanks to the data transmission capabilities existing in SCADA systems.

Implementation and Maintenance: Once the model is developed, there will be costs
associated with integrating it into existing systems, potential cloud storage and computing
fees, as well as ongoing costs for model updates and maintenance. Hardware for data
processing could be a major expense if the compute power is decided to be kept in house.

A detailed budget should be prepared based on the specific needs and scale of the
project. It’s also important to factor in potential cost savings from improved maintenance
practices, which can offset some of the upfront and ongoing costs. For example main-
tenance visits to the wind turbines could be accurately scheduled, to prevent expensive
failure situations in the wind turbine. Early, replacements could potentially save many
other components that could result affected from the failure.
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7. REGULATORY FRAMEWORK

The implementation and application of Machine Learning (ML) models for condition
monitoring of wind turbines must be done within an appropriate regulatory framework.
This is crucial to ensure that the practices are not only technically sound but also ethically
and legally compliant. This project isn’t place specific, as it treats a general approach for
predicting system faults of any wind turbine. In most jurisdictions, the following aspects
are of paramount importance:

Data Privacy and Security: The data used for training and testing the ML models can
sometimes contain sensitive information, such as precise geolocation of the wind turbines
or proprietary technical details. Therefore, all the procedures must comply with local and
international data protection regulations, such as the General Data Protection Regulation
(GDPR) in the European UnionEuropean.

Safety Standards: The ML models are used to predict the bearing temperature in
wind turbines, a critical component related to the safe operation of the equipment. Any
use of these predictions for maintenance and operations should therefore comply with
established safety standards for wind turbines, such as those outlined by the International
Electrotechnical Commission (IEC)2023-06-09_2023-06-08_2023-06-07_2023.

Model Transparency and Fairness: Given the increasing demand for explainabil-
ity in machine learning, it’s important to ensure that the models used are as transparent
and understandable as possible. Furthermore, any automated decision-making process, if
employed, must be fair and non-discriminatory.
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A. ANNEX: SCRIPTS FOR MLR, XGBOOST, LSTM AND DNN
MODELS

A.1. MLR Script

1

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from sklearn.model_selection import train_test_split ,

cross_val_score

6 from sklearn.linear_model import LinearRegression

7 from sklearn.preprocessing import StandardScaler

8 from sklearn.metrics import r2_score , mean_squared_error ,

mean_absolute_error

9 from scipy import stats

10 from sklearn.cluster import KMeans

11 #Remove Matplotlib Warnings/outdated interpretter

12 import warnings

13 import matplotlib.cbook

14 warnings.filterwarnings("ignore",category=matplotlib.cbook.

mplDeprecation)

15

16 # Define wind turbine to be analyzed

17 u = 3

18

19 # Define your file paths here

20 file_paths = [

21 ’Turbine_Data_Kelmarsh_’+str(u)+’_2021 -01-01_-_2021 -07-01_228.

csv’,

22 ’Turbine_Data_Kelmarsh_’+str(u)+’_2020 -01-01_-_2021 -01-01_228.

csv’,

23 ’Turbine_Data_Kelmarsh_’+str(u)+’_2019 -01-01_-_2020 -01-01_228.

csv’,

24 ’Turbine_Data_Kelmarsh_’+str(u)+’_2018 -01-01_-_2019 -01-01_228.

csv’,

25 ’Turbine_Data_Kelmarsh_’+str(u)+’_2017 -01-01_-_2018 -01-01_228.

csv’,

26 ’Turbine_Data_Kelmarsh_’+str(u)+’_2016 -01-03_-_2017 -01-01_228.

csv’

27 ]

28

29 # Turbine to be analyzed

30 j = 6

31 new_data_file_path = [



32 ’Turbine_Data_Kelmarsh_’+str(j)+’_2021 -01-01_-_2021 -07-01_228.

csv’,

33 ’Turbine_Data_Kelmarsh_’+str(j)+’_2020 -01-01_-_2021 -01-01_228.

csv’,

34 ’Turbine_Data_Kelmarsh_’+str(j)+’_2019 -01-01_-_2020 -01-01_228.

csv’,

35 ’Turbine_Data_Kelmarsh_’+str(j)+’_2018 -01-01_-_2019 -01-01_228.

csv’,

36 ’Turbine_Data_Kelmarsh_’+str(j)+’_2017 -01-01_-_2018 -01-01_228.

csv’,

37 ’Turbine_Data_Kelmarsh_’+str(j)+’_2016 -01-03_-_2017 -01-01_228.

csv’

38 ]

39

40

41

42

43 # Define your normal ranges here

44 normal_ranges = {

45 ’Nacelle temperature ( C )’: (-10, 50),

46 ’Power (kW)’: (0, 2000),

47 ’Rotor speed (RPM)’: (0, 73),

48 ’Stator temperature 1 ( C )’: (0, 150),

49 ’Wind speed (m/s)’: (0, 24),

50 ’Generator bearing rear temperature ( C )’: (0, 100),

51 }

52

53 # Concatenate data from all files

54 dataframes = [pd.read_csv(file_path , skiprows=9, encoding=’ISO

-8859-1’) for file_path in file_paths]

55 data = pd.concat(dataframes , ignore_index=True)

56

57 data = data[[’# Date and time’, ’Nacelle temperature ( C )’, ’

Power (kW)’, ’Rotor speed (RPM)’, ’Stator temperature 1 ( C )’

, ’Generator bearing rear temperature ( C )’, ’Wind speed (m/s

)’]]

58

59 # Extract wind speed and power data

60 wind_speed = data[’Wind speed (m/s)’]

61 power = data[’Power (kW)’]

62

63 # Initial number of data points

64 data_1 = len(data)

65

66 # Plot

67 plt.figure(figsize=(10, 5))

68 plt.scatter(wind_speed , power, s=5, color=’blue’)

69 plt.title(’Wind Turbine Power Curve’)

70 plt.xlabel(’Wind Speed (m/s)’)

71 plt.ylabel(’Power (kW)’)

72 plt.grid()



73 plt.show()

74

75 # Drop missing values

76 data = data.dropna()

77

78 # Filter based on the normal ranges and other conditions

79 for col, (min_val, max_val) in normal_ranges.items():

80 data = data[data[col].between(min_val, max_val)]

81 data = data[data[’Power (kW)’] > 0]

82 data = data[data[’Wind speed (m/s)’] > 3] # Assuming cut-in wind

speed as 3 m/s

83

84 # Extract the input and output columns from data

85 input_features = [’Nacelle temperature ( C )’, ’Power (kW)’, ’

Rotor speed (RPM)’,

86 ’Stator temperature 1 ( C )’, ’Wind speed (m/s)’

]

87 output_feature = ’Generator bearing rear temperature ( C )’

88 time_data = data[’# Date and time’]

89

90 # Compute and print the correlation coefficients

91

92

93 # Prepare the data for train_test_split

94 X = data[input_features]

95 y = data[output_feature]

96

97 data_2=len(data)

98 data_3= len(data)*0.7

99

100

101 # Split data into training set and test set

102 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.3, random_state=42)

103

104 # Extract wind speed and power data again after cleaning

105 wind_speed_after_cleaning = X_train[’Wind speed (m/s)’]

106 power_after_cleaning = X_train[’Power (kW)’]

107

108

109 from sklearn.covariance import EmpiricalCovariance

110

111 # Define the number of clusters for K-means

112 n_clusters = 3

113

114 # Apply K-means clustering on wind speed and power only

115 kmeans = KMeans(n_clusters=n_clusters , random_state=42)

116 X_train_clustered = kmeans.fit_predict(X_train[[’Wind speed (m/s)’,

’Power (kW)’]])

117



118 # Calculate Mahalanobis distance for each observation based on wind

speed and power

119 distances = np.zeros(X_train.shape[0])

120 for i in range(n_clusters):

121 cluster_center = kmeans.cluster_centers_[i]

122 cluster_points = X_train[X_train_clustered == i][[’Wind speed (m

/s)’, ’Power (kW)’]].values

123 cov_inv = np.linalg.pinv(np.cov(cluster_points , rowvar=False))

124 for j in range(cluster_points.shape[0]):

125 diff = cluster_points[j, :] - cluster_center

126 distances[j] = np.sqrt(diff.T @ cov_inv @ diff)

127

128 # Determine threshold for outliers

129 threshold = np.percentile(distances , 90) # Exclude top 15% as

anomalies

130

131 # Filter out the outliers from the training data

132 mask = distances < threshold

133 X_train = X_train[mask]

134 y_train = y_train[mask]

135

136 # Extract wind speed and power data after cleaning and splitting

137 wind_speed_train = X_train[’Wind speed (m/s)’]

138 power_train = X_train[’Power (kW)’]

139

140

141 # First clenaing

142 print("Data before cleaning: ", round(data_1, 2), " after: : ",

round(data_2, 2), " ---> Reduction of: ", (round(((data_1-

data_2))/data_1*100, 2)),"%")

143 # Filtering

144 print("Training data before Mahalanobis filtering: ",round(data_3,

2), "after: ", round(len(X_train), 2), "Reduction of ---> ",

round((data_3-len(X_train))/data_3*100, 2), "%")

145

146

147 # Plot after cleaning and splitting

148 # Plot after cleaning and Mahalanobis distance filtering

149 plt.figure(figsize=(10, 5))

150 plt.scatter(wind_speed_after_cleaning , power_after_cleaning , s=5,

color=’red’, label=’After Preliminary Cleaning’)

151 plt.scatter(wind_speed_train , power_train , s=5, color=’blue’, label=

’After Mahalanobis Filtering’)

152 plt.title(’Wind Turbine Test Set Power Curve - After Cleaning and

Mahalanobis Filtering’)

153 plt.xlabel(’Wind Speed (m/s)’)

154 plt.ylabel(’Power (kW)’)

155 plt.legend(loc=’upper left’)

156 plt.grid()

157 plt.show()

158



159

160 # Beginning of correlations plot -------

161 # Compute and print the correlation coefficients

162 correlations = {}

163 for input_feature in input_features:

164 correlations[input_feature] = {

165 ’Pearson’: data[input_feature].corr(data[output_feature],

method=’pearson’),

166 ’Spearman’: data[input_feature].corr(data[output_feature],

method=’spearman’),

167 ’Kendall’: data[input_feature].corr(data[output_feature],

method=’kendall’),

168 }

169

170 # New code to plot the relation between each of the inputs and the

output temperature.

171 plt.figure(figsize=(18, 12))

172 for i, input_feature in enumerate(input_features , 1):

173 plt.subplot(2, 3, i)

174 plt.scatter(X[input_feature], y, s=5)

175 plt.xlabel(input_feature)

176 plt.ylabel(’Generator bearing rear temperature ( C )’)

177

178 # Add a trendline

179 x = X[input_feature]

180 y_trend = y

181 slope, intercept , r_value, p_value, std_err = stats.linregress(x

, y_trend)

182 plt.plot(x, intercept + slope * x, ’r’, label=’fitted line’)

183

184 # Add the correlation coefficients to the subplot

185 plt.text(0.7, 0.075, f"Pearson: {correlations[input_feature][’

Pearson ’]:.2f}", transform=plt.gca().transAxes)

186 plt.text(0.7, 0.05, f"Spearman: {correlations[input_feature][’

Spearman ’]:.2f}", transform=plt.gca().transAxes)

187 plt.text(0.7, 0.025, f"Kendall: {correlations[input_feature][’

Kendall ’]:.2f}", transform=plt.gca().transAxes)

188

189 plt.tight_layout()

190 plt.show()

191

192 # End of correlations plot -------

193

194 # Extract date and time for test set before scaling

195 date_test = time_data[X_test.index]

196

197 # Standardize the data

198 scaler = StandardScaler()

199 X_train = scaler.fit_transform(X_train)

200 X_test = scaler.transform(X_test)

201



202 # Train model

203 model = LinearRegression()

204 model.fit(X_train, y_train)

205

206 # Perform cross-validation

207 scores = cross_val_score(model, X_train, y_train, cv=5)

208

209 print(’Cross-Validation Scores:’, scores)

210

211

212 y_pred_train = model.predict(X_train)

213 y_pred_test = model.predict(X_test)

214

215 r2_train = r2_score(y_train, y_pred_train)

216 r2_test = r2_score(y_test, y_pred_test)

217

218 rmse_train = np.sqrt(mean_squared_error(y_train, y_pred_train))

219 rmse_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

220

221 mae_train = mean_absolute_error(y_train, y_pred_train)

222 mae_test = mean_absolute_error(y_test, y_pred_test)

223

224 mape_train = np.mean(np.abs((y_train - y_pred_train) / y_train)) *

100

225 mape_test = np.mean(np.abs((y_test - y_pred_test) / y_test)) * 100

226

227 print(’Train Metrics:\nR2:’, r2_train, ’RMSE:’, rmse_train , ’MAE:’,

mae_train , ’MAPE:’, mape_train)

228 print(’Test Metrics:\nR2:’, r2_test, ’RMSE:’, rmse_test , ’MAE:’,

mae_test , ’MAPE:’, mape_test)

229

230 deviations = y_test - y_pred_test

231

232 UCL = deviations.mean() + 3*deviations.std()

233 LCL = deviations.mean() - 3*deviations.std()

234

235 # Prepare data for plotting

236 plotting_data = pd.DataFrame({’Date’: date_test ,

237 ’Actual’: y_test, ’Predicted’:

y_pred_test})

238 plotting_data[’Date’] = pd.to_datetime(plotting_data[’Date’])

239 plotting_data.sort_values(’Date’, inplace=True)

240

241 # Plot 1: Actual vs Predicted

242 plt.figure(figsize=(10, 5))

243 plt.plot(plotting_data[’Date’], plotting_data[’Actual’], label=’

Actual’, color=’red’)

244 plt.plot(plotting_data[’Date’], plotting_data[’Predicted’], label=’

Predicted’, color=’green’)

245 plt.title(’Generator Temperature vs Prediction Result’)

246 plt.xlabel(’Date’)



247 plt.ylabel(’Generator Bearing Temperature ( C )’)

248 plt.legend()

249 plt.xticks(rotation=45)

250 plt.grid()

251 plt.show()

252

253 # Calculate Deviations

254 plotting_data[’Deviations’] = plotting_data[’Actual’] -

plotting_data[’Predicted’]

255

256 # Calculate standard deviation for the Deviations

257 std_dev = plotting_data[’Deviations’].std()

258

259 # Set UCL and LCL (usually set at mean 3*std_dev for control

charts)

260 plotting_data[’UCL’] = plotting_data[’Deviations’].mean() + 3*

std_dev

261 plotting_data[’LCL’] = plotting_data[’Deviations’].mean() - 3*

std_dev

262

263 # Plot 2: Control Chart

264 plt.figure(figsize=(10, 5))

265 plt.plot(plotting_data[’Date’], plotting_data[’Deviations’], label=’

Deviations’, color=’blue’)

266 plt.axhline(y=plotting_data[’UCL’].values[0], label=’UCL’, color=’

red’) # UCL as straight line

267 plt.axhline(y=plotting_data[’LCL’].values[0], label=’LCL’, color=’

green’) # LCL as straight line

268 plt.title(’Generator Bearing Temperature Deviations’)

269 plt.xlabel(’Date’)

270 plt.ylabel(’Deviations ( C )’)

271 plt.legend()

272 plt.xticks(rotation=45)

273 plt.grid()

274 plt.show()

275

276 # Added code to test the trained model with healthy data on to

another unhealthy turbine -----------

277

278

279

280 def preprocess_new_data(file_paths , normal_ranges , scaler):

281 # Read and concatenate all files

282 new_dataframes = [pd.read_csv(file_path , skiprows=9, encoding=’

ISO-8859-1’) for file_path in file_paths]

283 new_data = pd.concat(new_dataframes , ignore_index=True)

284

285 new_data = new_data[[’# Date and time’, ’Nacelle temperature (

C )’, ’Power (kW)’, ’Rotor speed (RPM)’,

286 ’Stator temperature 1 ( C )’, ’Generator

bearing rear temperature ( C )’, ’



Wind speed (m/s)’]]

287

288 # Drop missing values

289 new_data = new_data.dropna()

290

291 # Filter based on the normal ranges and other conditions

292 for col, (min_val, max_val) in normal_ranges.items():

293 new_data = new_data[new_data[col].between(min_val, max_val)]

294 new_data = new_data[new_data[’Power (kW)’] > 0]

295 new_data = new_data[new_data[’Wind speed (m/s)’] > 4] #

Assuming cut-in wind speed as 4 m/s

296

297 # Extract date and time before scaling

298 time_data = new_data[’# Date and time’]

299

300 # Extract actual generator bearing rear temperatures before

scaling

301 new_actuals = new_data[’Generator bearing rear temperature (

C )’].values

302

303 new_data = new_data[input_features]

304

305 # Standardize the data

306 new_data = scaler.transform(new_data)

307

308 return new_data , time_data , new_actuals

309

310 new_data , new_time_data , new_actuals = preprocess_new_data(

new_data_file_path , normal_ranges , scaler)

311

312 # Predict on new data

313 new_predictions = model.predict(new_data)

314

315 # Calculate metrics and plot results as before

316 r2_new = r2_score(new_actuals , new_predictions)

317 rmse_new = np.sqrt(mean_squared_error(new_actuals , new_predictions))

318 mae_new = mean_absolute_error(new_actuals , new_predictions)

319 mape_new = np.mean(np.abs((new_actuals - new_predictions) /

new_actuals)) * 100

320

321 print(’Test on New Data:\nR2:’, r2_new, ’RMSE:’, rmse_new, ’MAE:’,

mae_new, ’MAPE:’, mape_new)

322

323 new_deviations = new_actuals - new_predictions

324

325 UCL_new = new_deviations.mean() + 3*new_deviations.std()

326 LCL_new = new_deviations.mean() - 3*new_deviations.std()

327

328 # Prepare data for plotting

329 plotting_new_data = pd.DataFrame({’Date’: new_time_data ,



330 ’Actual’: new_actuals , ’Predicted’

: new_predictions})

331 plotting_new_data[’Date’] = pd.to_datetime(plotting_new_data[’Date’

])

332 plotting_new_data.sort_values(’Date’, inplace=True)

333

334 # Plot: Actual vs Predicted

335 plt.figure(figsize=(10, 5))

336 plt.plot(plotting_new_data[’Date’], plotting_new_data[’Actual’],

label=’Actual’, color=’red’)

337 plt.plot(plotting_new_data[’Date’], plotting_new_data[’Predicted’],

label=’Predicted’, color=’green’)

338 plt.title(’New Data: Actual vs Predicted’)

339 plt.xlabel(’Date and Time’)

340 plt.ylabel(’Generator Bearing Rear Temperature’)

341 plt.legend()

342 plt.grid()

343 plt.show()

344

345

346 # Calculate Deviations

347 plotting_new_data[’Deviations’] = plotting_new_data[’Actual’] -

plotting_new_data[’Predicted’]

348

349 # Calculate standard deviation for the Deviations

350 std_dev = plotting_new_data[’Deviations’].std()

351

352 # Set UCL and LCL (usually set at mean 3*std_dev for control

charts)

353 plotting_new_data[’UCL’] = plotting_new_data[’Deviations’].mean() +

3*std_dev

354 plotting_new_data[’LCL’] = plotting_new_data[’Deviations’].mean() -

3*std_dev

355

356 # Plot 2: Control Chart

357 plt.figure(figsize=(10, 5))

358 plt.plot(plotting_new_data[’Date’], plotting_new_data[’Deviations’],

label=’Deviations’, color=’blue’)

359 plt.axhline(y=plotting_new_data[’UCL’].values[0], label=’UCL’, color

=’red’) # UCL as straight line

360 plt.axhline(y=plotting_new_data[’LCL’].values[0], label=’LCL’, color

=’yellow’) # LCL as straight line

361 plt.title(’Generator Bearing Temperature Deviations’)

362 plt.xlabel(’Date’)

363 plt.ylabel(’Deviations ( C )’)

364 plt.legend()

365 plt.xticks(rotation=45)

366 plt.grid()

367 plt.show()

368

369 # User defined input for percentage of top deviations



370 top_deviation_percentage = 1

371

372 # Filtering out the data points which surpass the UCL

373 over_UCL_data = plotting_data[plotting_data[’Deviations’] > UCL]

374

375 # Calculate the number of data points to select

376 num_top_points = int(len(over_UCL_data) * top_deviation_percentage /

100)

377

378 # Get the top N% data points with highest absolute deviations

379 top_deviations = over_UCL_data.nlargest(num_top_points , ’Deviations’

, keep=’all’)

380

381 # Print the date and time for these points

382 print("For wind turbine:", str(u))

383 print(top_deviations[[’Date’]])

A.2. LSTM Script

1

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from sklearn.model_selection import train_test_split

6 from sklearn.preprocessing import StandardScaler

7 from sklearn.metrics import r2_score , mean_squared_error ,

mean_absolute_error

8 from keras.models import Sequential

9 from keras.layers import Dense, LSTM

10 from keras.optimizers import Adam

11 from keras.losses import MeanSquaredError

12 from keras.activations import relu

13 from keras.callbacks import EarlyStopping

14 #Remove Matplotlib Warnings/outdated interpretter

15 import warnings

16 import matplotlib.cbook

17 warnings.filterwarnings("ignore",category=matplotlib.cbook.

mplDeprecation)

18

19 # Define wind turbine to be analyzed

20 i = 6

21

22 # Define your file paths here

23 file_paths = [

24 ’Turbine_Data_Kelmarsh_’+str(i)+’_2021 -01-01_-_2021 -07-01_228.

csv’,

25 ’Turbine_Data_Kelmarsh_’+str(i)+’_2020 -01-01_-_2021 -01-01_228.

csv’,



26 ’Turbine_Data_Kelmarsh_’+str(i)+’_2019 -01-01_-_2020 -01-01_228.

csv’,

27 ’Turbine_Data_Kelmarsh_’+str(i)+’_2018 -01-01_-_2019 -01-01_228.

csv’,

28 ’Turbine_Data_Kelmarsh_’+str(i)+’_2017 -01-01_-_2018 -01-01_228.

csv’,

29 ’Turbine_Data_Kelmarsh_’+str(i)+’_2016 -01-03_-_2017 -01-01_228.

csv’

30 ]

31

32

33 # Define normal ranges here, based on knowledge on the WT

34 normal_ranges = {

35 ’Nacelle temperature ( C )’: (-10, 50),

36 ’Power (kW)’: (0, 2000),

37 ’Rotor speed (RPM)’: (0, 73),

38 ’Stator temperature 1 ( C )’: (0, 150),

39 ’Wind speed (m/s)’: (0, 24),

40 ’Generator bearing rear temperature ( C )’: (0, 100),

41 }

42 # Concatenate data from all files

43 dataframes = [pd.read_csv(file_path , skiprows=9, encoding=’ISO

-8859-1’) for file_path in file_paths]

44 data = pd.concat(dataframes , ignore_index=True)

45

46 data = data[[’# Date and time’, ’Nacelle temperature ( C )’, ’

Power (kW)’, ’Rotor speed (RPM)’, ’Stator temperature 1 ( C )’

, ’Generator bearing rear temperature ( C )’, ’Wind speed (m/s

)’]]

47

48 # Extract wind speed and power data

49 wind_speed = data[’Wind speed (m/s)’]

50 power = data[’Power (kW)’]

51

52 # Print initial number of data points

53 print("Number of data points before cleaning: ", len(data))

54

55

56 # Plot Power curve

57 plt.figure(figsize=(10, 5))

58 plt.scatter(wind_speed , power, s=5, color=’blue’)

59 plt.title(’Wind Turbine Power Curve’)

60 plt.xlabel(’Wind Speed (m/s)’)

61 plt.ylabel(’Power (kW)’)

62 plt.grid()

63 plt.show()

64

65 # Drop missing values

66 data = data.dropna()

67

68 # Filter based on the normal ranges and other conditions



69 for col, (min_val, max_val) in normal_ranges.items():

70 data = data[data[col].between(min_val, max_val)]

71 data = data[data[’Power (kW)’] > 0]

72 data = data[data[’Wind speed (m/s)’] > 3] # Assuming cut-in wind

speed as 3 m/s

73

74 time_data = data[’# Date and time’]

75

76 # Extract the input and output columns from data

77 input_features = [’Nacelle temperature ( C )’, ’Power (kW)’, ’

Rotor speed (RPM)’,

78 ’Stator temperature 1 ( C )’, ’Wind speed (m/s)’

]

79 output_feature = ’Generator bearing rear temperature ( C )’

80

81 # Prepare the data for train_test_split

82 X = data[input_features]

83 y = data[output_feature]

84

85 # Split data into training set and test set

86 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.3, random_state=42)

87

88 # Combine X_train and y_train back into training data

89 data_train = pd.concat([X_train, y_train], axis=1)

90

91 # Drop missing values in training data

92 data_train = data_train.dropna()

93

94 # Filter based on the normal ranges and other conditions in training

data

95 for col, (min_val, max_val) in normal_ranges.items():

96 data_train = data_train[data_train[col].between(min_val, max_val

)]

97 data_train = data_train[data_train[’Power (kW)’] > 0]

98 data_train = data_train[data_train[’Wind speed (m/s)’] > 3] #

Assuming cut-in wind speed as 3 m/s

99

100 # Extract wind speed and power data again after cleaning

101 wind_speed_train = data_train[’Wind speed (m/s)’]

102 power_train = data_train[’Power (kW)’]

103

104 # Print number of data points after cleaning

105 print("Number of data points after cleaning: ", len(data_train))

106

107 # Plot after cleaning

108 plt.figure(figsize=(10, 5))

109 plt.scatter(wind_speed_train , power_train , s=5, color=’blue’)

110 plt.title(’Wind Turbine Power Curve - After Cleaning’)

111 plt.xlabel(’Wind Speed (m/s)’)

112 plt.ylabel(’Power (kW)’)



113 plt.grid()

114 plt.show()

115

116 # Re-assign cleaned X_train and y_train

117 X_train = data_train[input_features]

118 y_train = data_train[output_feature]

119

120 # Extract date and time for the test set before scaling

121 date_test = time_data[X_test.index]

122

123 # Standardize the data

124 scaler = StandardScaler()

125 X_train = scaler.fit_transform(X_train)

126 X_test = scaler.transform(X_test)

127

128 # Reshape the data for LSTM (Samples, Time steps, Features)

129 X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])

130 X_test = X_test.reshape(X_test.shape[0], 1, X_test.shape[1])

131

132 # Define the LSTM model

133 model = Sequential()

134 model.add(LSTM(50, activation=’relu’, return_sequences=True,

input_shape=(X_train.shape[1], X_train.shape[2])))

135 model.add(LSTM(50, activation=’relu’, return_sequences=True))

136 model.add(LSTM(25, activation=’relu’))

137 model.add(Dense(1))

138

139 # Compile the model

140 model.compile(optimizer=Adam(), loss=MeanSquaredError())

141 # Apply Early Stopping

142 es = EarlyStopping(monitor=’val_loss’, mode=’min’, verbose=1,

patience=10)

143

144 # Train the model. Epochs, batch size and similar metrics can be

augmented to refine model performace. These values have been

choosen as a way to reduce computional complexity.

145 history = model.fit(X_train, y_train, validation_split=0.2, epochs

=5, batch_size=5, verbose=1, callbacks=[es])

146

147 # Perform prediction and obtain performance metrics

148 y_pred_train = model.predict(X_train).flatten()

149 y_pred_test = model.predict(X_test).flatten()

150

151 r2_train = r2_score(y_train, y_pred_train)

152 r2_test = r2_score(y_test, y_pred_test)

153

154 rmse_train = np.sqrt(mean_squared_error(y_train, y_pred_train))

155 rmse_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

156

157 mae_train = mean_absolute_error(y_train, y_pred_train)

158 mae_test = mean_absolute_error(y_test, y_pred_test)



159

160 mape_train = np.mean(np.abs((y_train - y_pred_train) / y_train)) *

100

161 mape_test = np.mean(np.abs((y_test - y_pred_test) / y_test)) * 100

162

163 print(’Train Metrics:\nR2:’, r2_train, ’RMSE:’, rmse_train , ’MAE:’,

mae_train , ’MAPE:’, mape_train)

164 print(’Test Metrics:\nR2:’, r2_test, ’RMSE:’, rmse_test , ’MAE:’,

mae_test , ’MAPE:’, mape_test)

165

166 deviations = y_test - y_pred_test

167

168 UCL = deviations.mean() + 3*deviations.std()

169 LCL = deviations.mean() - 3*deviations.std()

170

171 # Prepare data for plotting

172 plotting_data = pd.DataFrame({’Date’: date_test ,

173 ’Actual’: y_test, ’Predicted’:

y_pred_test})

174 plotting_data[’Date’] = pd.to_datetime(plotting_data[’Date’])

175 plotting_data.sort_values(’Date’, inplace=True)

176

177 # Plot 1: Actual vs Predicted

178 plt.figure(figsize=(10, 5))

179 plt.plot(plotting_data[’Date’], plotting_data[’Actual’], label=’

Actual’, color=’red’)

180 plt.plot(plotting_data[’Date’], plotting_data[’Predicted’], label=’

Predicted’, color=’green’)

181 plt.title(’Generator Temperature vs Prediction Result’)

182 plt.xlabel(’Date’)

183 plt.ylabel(’Generator Bearing Temperature ( C )’)

184 plt.legend()

185 plt.xticks(rotation=45)

186 plt.grid()

187 plt.show()

188

189 # Calculate Deviations

190 plotting_data[’Deviations’] = plotting_data[’Actual’] -

plotting_data[’Predicted’]

191

192 # Calculate standard deviation for the Deviations

193 std_dev = plotting_data[’Deviations’].std()

194

195 # Set UCL and LCL (usually set at mean 3*std_dev )

196 plotting_data[’UCL’] = plotting_data[’Deviations’].mean() + 3*

std_dev

197 plotting_data[’LCL’] = plotting_data[’Deviations’].mean() - 3*

std_dev

198

199 # Plot 2: Control Chart

200 plt.figure(figsize=(10, 5))



201 plt.plot(plotting_data[’Date’], plotting_data[’Deviations’], label=’

Deviations’, color=’blue’)

202 plt.axhline(y=plotting_data[’UCL’].values[0], label=’UCL’, color=’

red’) # UCL as straight line

203 plt.axhline(y=plotting_data[’LCL’].values[0], label=’LCL’, color=’

yellow’) # LCL as straight line

204 plt.title(’Generator Bearing Temperature Deviations’)

205 plt.xlabel(’Date’)

206 plt.ylabel(’Deviations ( C )’)

207 plt.legend()

208 plt.xticks(rotation=45)

209 plt.grid()

210 plt.show()

A.3. XGBoost Script

1

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from sklearn.model_selection import train_test_split

6 from sklearn.preprocessing import StandardScaler

7 from sklearn.metrics import r2_score , mean_squared_error ,

mean_absolute_error

8 from keras.models import Sequential

9 from keras.layers import Dense, LSTM

10 from keras.optimizers import Adam

11 from keras.losses import MeanSquaredError

12 from keras.activations import relu

13 from keras.callbacks import EarlyStopping

14 import xgboost as xgb

15 from sklearn.model_selection import GridSearchCV

16 #Remove Matplotlib Warnings/outdated interpretter

17 import warnings

18 import matplotlib.cbook

19 warnings.filterwarnings("ignore",category=matplotlib.cbook.

mplDeprecation)

20

21 # Define wind turbine to be analyzed

22 i = 6

23

24 # Define your file paths here

25 file_paths = [

26 ’Turbine_Data_Kelmarsh_’+str(i)+’_2021 -01-01_-_2021 -07-01_228.

csv’,

27 ’Turbine_Data_Kelmarsh_’+str(i)+’_2020 -01-01_-_2021 -01-01_228.

csv’,



28 ’Turbine_Data_Kelmarsh_’+str(i)+’_2019 -01-01_-_2020 -01-01_228.

csv’,

29 ’Turbine_Data_Kelmarsh_’+str(i)+’_2018 -01-01_-_2019 -01-01_228.

csv’,

30 ’Turbine_Data_Kelmarsh_’+str(i)+’_2017 -01-01_-_2018 -01-01_228.

csv’,

31 ’Turbine_Data_Kelmarsh_’+str(i)+’_2016 -01-03_-_2017 -01-01_228.

csv’

32 ]

33

34

35 # Define normal ranges for SCADA parameters based on knowledge

36 normal_ranges = {

37 ’Nacelle temperature ( C )’: (-10, 50),

38 ’Power (kW)’: (0, 2000),

39 ’Rotor speed (RPM)’: (0, 73),

40 ’Stator temperature 1 ( C )’: (0, 150),

41 ’Wind speed (m/s)’: (0, 24),

42 ’Generator bearing rear temperature ( C )’: (0, 100),

43 }

44 #Look up temeprature vestas

45

46 # Concatenate data from all files

47 dataframes = [pd.read_csv(file_path , skiprows=9, encoding=’ISO

-8859-1’) for file_path in file_paths]

48 data = pd.concat(dataframes , ignore_index=True)

49

50 data = data[[’# Date and time’, ’Nacelle temperature ( C )’, ’

Power (kW)’, ’Rotor speed (RPM)’, ’Stator temperature 1 ( C )’

, ’Generator bearing rear temperature ( C )’, ’Wind speed (m/s

)’]]

51

52 # Extract wind speed and power data

53 wind_speed = data[’Wind speed (m/s)’]

54 power = data[’Power (kW)’]

55

56 # Initial number of data points

57 print("Number of data points before cleaning: ", len(data))

58

59 # Plot Power curve before data cleaning

60 plt.figure(figsize=(10, 5))

61 plt.scatter(wind_speed , power, s=5, color=’blue’)

62 plt.title(’Wind Turbine Power Curve’)

63 plt.xlabel(’Wind Speed (m/s)’)

64 plt.ylabel(’Power (kW)’)

65 plt.grid()

66 plt.show()

67

68 # Drop missing values

69 data = data.dropna()

70



71 # Filter based on the normal ranges and additional conditions such

as cut-in wind speed and negative power

72 for col, (min_val, max_val) in normal_ranges.items():

73 data = data[data[col].between(min_val, max_val)]

74 data = data[data[’Power (kW)’] > 0]

75 data = data[data[’Wind speed (m/s)’] > 3] # Assuming cut-in wind

speed as 4 m/s

76

77 # Prepare data for train_test_split

78 input_features = [’Nacelle temperature ( C )’, ’Power (kW)’, ’

Rotor speed (RPM)’,

79 ’Stator temperature 1 ( C )’, ’Wind speed (m/s)’

]

80 output_feature = ’Generator bearing rear temperature ( C )’

81 time_data = data[’# Date and time’]

82

83

84 # Extract wind speed and power data again after cleaning

85 wind_speed = data[’Wind speed (m/s)’]

86 power = data[’Power (kW)’]

87

88 # Print number of data points after cleaning

89 print("Number of data points after cleaning: ", len(data))

90

91 # Plot Power curve after cleaning

92 plt.figure(figsize=(10, 5))

93 plt.scatter(wind_speed , power, s=5, color=’blue’)

94 plt.title(’Wind Turbine Power Curve - After Cleaning’)

95 plt.xlabel(’Wind Speed (m/s)’)

96 plt.ylabel(’Power (kW)’)

97 plt.grid()

98 plt.show()

99

100 #New script Manhalobis

101 from scipy.spatial import distance

102 from sklearn.cluster import KMeans

103

104 # Prepare data for outlier detection

105 X_clustering = data[input_features]

106

107 # K-means clustering to divide the dataset into smaller groups

108 kmeans = KMeans(n_clusters=3, random_state=0).fit(X_clustering)

109 labels = kmeans.labels_

110 data[’Cluster’] = labels

111

112 # Calculate Mahalanobis Distance for each observation in each

cluster and mark outliers

113 dist_threshold = {} # To store the threshold value for each cluster

114 for cluster in set(labels):

115 cluster_data = data[data[’Cluster’] == cluster][input_features]

116 cov_matrix = np.cov(cluster_data , rowvar=False)



117 inv_cov_matrix = np.linalg.inv(cov_matrix)

118 mean_values = cluster_data.mean().values

119 mdist_values = []

120 for index, row in cluster_data.iterrows():

121 mdist_values.append(distance.mahalanobis(row, mean_values ,

inv_cov_matrix))

122 mdist_values = np.array(mdist_values)

123 # Setting a threshold value of the distance MD to consider about

10-15% of the points as anomalous

124 dist_threshold[cluster] = np.percentile(mdist_values , 90)

125 data.loc[data[’Cluster’] == cluster, ’MahalanobisDist’] =

mdist_values

126

127 # Filter outliers based on calculated threshold for each cluster

128 for cluster in set(labels):

129 data = data[~((data[’Cluster’] == cluster) & (data[’

MahalanobisDist’] > dist_threshold[cluster]))]

130

131 #End new code--------

132

133 # Prepare data for train_test_split

134 X = data[input_features]

135 y = data[output_feature]

136

137 # Split data into training set and test set

138 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.3, random_state=42)

139 # Extract date and time for the test set before scaling

140 date_test = time_data[X_test.index]

141 # Standardize data

142 scaler = StandardScaler()

143 X_train = scaler.fit_transform(X_train)

144 X_test = scaler.transform(X_test)

145

146 # Define XGBoost model

147 model = xgb.XGBRegressor()

148

149 # Define the hyperparameter grid. In order to activate search for

optmial hypermarameter of the XGBoost model, this section should

be commented out

150 #param_grid = {

151 # ’learning_rate’: [0.01, 0.1, 0.2, 0.3],

152 # ’max_depth’: [3, 5, 7, 10],

153 # ’n_estimators’: [100, 200, 500, 1000],

154 # ’min_child_weight’: [1, 3, 5],

155 # ’subsample’: [0.5, 0.7, 1.0],

156 # ’colsample_bytree’: [0.5, 0.7, 1.0],

157 #}

158 #Once found define directly optimal hyperparameters. In case search

wants to be performed for optimal hyperparameters , this section

should be commented and previous one commented out



159 param_grid = {

160 ’learning_rate’: [0.01],

161 ’max_depth’: [7],

162 ’n_estimators’: [1000],

163 ’min_child_weight’: [1],

164 ’subsample’: [0.5],

165 ’colsample_bytree’: [1.0],

166 }

167

168 # Perform Grid Search CV

169 gs_cv = GridSearchCV(model, param_grid , n_jobs=-1, cv=5, verbose=2)

170 gs_cv.fit(X_train, y_train)

171

172 # Get best parameters

173 best_params = gs_cv.best_params_

174 print("Best parameters: ", best_params)

175

176 # Define the model with the best parameters

177 model = xgb.XGBRegressor(**best_params)

178

179 # Train the model

180 model.fit(X_train, y_train)

181

182 # Perform prediction

183 y_pred_train = model.predict(X_train)

184 y_pred_test = model.predict(X_test)

185

186 #Performace metrics

187

188 r2_train = r2_score(y_train, y_pred_train)

189 r2_test = r2_score(y_test, y_pred_test)

190

191 rmse_train = np.sqrt(mean_squared_error(y_train, y_pred_train))

192 rmse_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

193

194 mae_train = mean_absolute_error(y_train, y_pred_train)

195 mae_test = mean_absolute_error(y_test, y_pred_test)

196

197 mape_train = np.mean(np.abs((y_train - y_pred_train) / y_train)) *

100

198 mape_test = np.mean(np.abs((y_test - y_pred_test) / y_test)) * 100

199

200 print(’Train Metrics:\nR2:’, r2_train, ’RMSE:’, rmse_train , ’MAE:’,

mae_train , ’MAPE:’, mape_train)

201 print(’Test Metrics:\nR2:’, r2_test, ’RMSE:’, rmse_test , ’MAE:’,

mae_test , ’MAPE:’, mape_test)

202

203 deviations = y_test - y_pred_test

204

205 UCL = deviations.mean() + 3*deviations.std()

206 LCL = deviations.mean() - 3*deviations.std()



207

208 # Prepare data for plotting

209 plotting_data = pd.DataFrame({’Date’: date_test ,

210 ’Actual’: y_test, ’Predicted’:

y_pred_test})

211 plotting_data[’Date’] = pd.to_datetime(plotting_data[’Date’])

212 plotting_data.sort_values(’Date’, inplace=True)

213

214 # Plot 1: Actual vs Predicted

215 plt.figure(figsize=(10, 5))

216 plt.plot(plotting_data[’Date’], plotting_data[’Actual’], label=’

Actual’, color=’red’)

217 plt.plot(plotting_data[’Date’], plotting_data[’Predicted’], label=’

Predicted’, color=’green’)

218 plt.title(’Generator Temperature vs Prediction Result’)

219 plt.xlabel(’Date’)

220 plt.ylabel(’Generator Bearing Temperature ( C )’)

221 plt.legend()

222 plt.xticks(rotation=45)

223 plt.grid()

224 plt.show()

225

226

227 # Calculate Deviations

228 plotting_data[’Deviations’] = plotting_data[’Actual’] -

plotting_data[’Predicted’]

229

230 # Calculate standard deviation for the Deviations

231 std_dev = plotting_data[’Deviations’].std()

232

233 # Set UCL and LCL (usually set at mean 3*std_dev for control

charts)

234 plotting_data[’UCL’] = plotting_data[’Deviations’].mean() + 3*

std_dev

235 plotting_data[’LCL’] = plotting_data[’Deviations’].mean() - 3*

std_dev

236

237 # Plot 2: Control Chart

238 plt.figure(figsize=(10, 5))

239 plt.plot(plotting_data[’Date’], plotting_data[’Deviations’], label=’

Deviations’, color=’blue’)

240 plt.axhline(y=plotting_data[’UCL’].values[0], label=’UCL’, color=’

red’) # UCL as straight line

241 plt.axhline(y=plotting_data[’LCL’].values[0], label=’LCL’, color=’

yellow’) # LCL as straight line

242 plt.title(’Generator Bearing Temperature Deviations’)

243 plt.xlabel(’Date’)

244 plt.ylabel(’Deviations ( C )’)

245 plt.legend()

246 plt.xticks(rotation=45)

247 plt.grid()



248 plt.show()

A.4. Deep Neural Network Script

1

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from sklearn.model_selection import train_test_split

6 from sklearn.preprocessing import StandardScaler

7 from sklearn.metrics import r2_score , mean_squared_error ,

mean_absolute_error

8 from keras.models import Sequential

9 from keras.layers import Dense, Dropout

10 #Remove Matplotlib Warnings/outdated interpretter

11 import warnings

12 import matplotlib.cbook

13 warnings.filterwarnings("ignore",category=matplotlib.cbook.

mplDeprecation)

14

15 # Define wind turbine to be analyzed

16 i = 6

17

18 # Define your file paths here

19 file_paths = [

20 ’Turbine_Data_Kelmarsh_’+str(i)+’_2021 -01-01_-_2021 -07-01_228.

csv’,

21 ’Turbine_Data_Kelmarsh_’+str(i)+’_2020 -01-01_-_2021 -01-01_228.

csv’,

22 ’Turbine_Data_Kelmarsh_’+str(i)+’_2019 -01-01_-_2020 -01-01_228.

csv’,

23 ’Turbine_Data_Kelmarsh_’+str(i)+’_2018 -01-01_-_2019 -01-01_228.

csv’,

24 ’Turbine_Data_Kelmarsh_’+str(i)+’_2017 -01-01_-_2018 -01-01_228.

csv’,

25 ’Turbine_Data_Kelmarsh_’+str(i)+’_2016 -01-03_-_2017 -01-01_228.

csv’

26 ]

27

28

29 # Define normal ranges

30 normal_ranges = {

31 ’Nacelle temperature ( C )’: (-10, 50),

32 ’Power (kW)’: (0, 2000),

33 ’Rotor speed (RPM)’: (0, 73),

34 ’Stator temperature 1 ( C )’: (0, 150),

35 ’Wind speed (m/s)’: (0, 24),

36 ’Generator bearing rear temperature ( C )’: (0, 100),



37 }

38

39 # Concatenate data from all files, change enconding and row count

according to format of your csv file

40 dataframes = [pd.read_csv(file_path , skiprows=9, encoding=’ISO

-8859-1’) for file_path in file_paths]

41 data = pd.concat(dataframes , ignore_index=True)

42

43 data = data[[’# Date and time’, ’Nacelle temperature ( C )’, ’

Power (kW)’, ’Rotor speed (RPM)’, ’Stator temperature 1 ( C )’

, ’Generator bearing rear temperature ( C )’, ’Wind speed (m/s

)’]]

44

45 # Extract wind speed and power data

46 wind_speed = data[’Wind speed (m/s)’]

47 power = data[’Power (kW)’]

48

49 # Print initial number of data points

50 print("Number of data points before cleaning: ", len(data))

51

52 # Plot

53 plt.figure(figsize=(10, 5))

54 plt.scatter(wind_speed , power, s=5, color=’blue’)

55 plt.title(’Wind Turbine Power Curve’)

56 plt.xlabel(’Wind Speed (m/s)’)

57 plt.ylabel(’Power (kW)’)

58 plt.grid()

59 plt.show()

60

61 # Drop missing values

62 data = data.dropna()

63

64 # Filter based on the normal ranges and other conditions

65 for col, (min_val, max_val) in normal_ranges.items():

66 data = data[data[col].between(min_val, max_val)]

67 data = data[data[’Power (kW)’] > 0]

68 data = data[data[’Wind speed (m/s)’] > 3] # Assuming cut-in wind

speed as 3 m/s

69

70 # Extract wind speed and power data again after cleaning

71 wind_speed = data[’Wind speed (m/s)’]

72 power = data[’Power (kW)’]

73

74 # Print number of data points after cleaning

75 print("Number of data points after cleaning: ", len(data))

76

77 # Plot after cleaning

78 plt.figure(figsize=(10, 5))

79 plt.scatter(wind_speed , power, s=5, color=’blue’)

80 plt.title(’Wind Turbine Power Curve - After Cleaning’)

81 plt.xlabel(’Wind Speed (m/s)’)



82 plt.ylabel(’Power (kW)’)

83 plt.grid()

84 plt.show()

85

86 #Prepare data for train_test_split

87 input_features = [’Nacelle temperature ( \ C )’, ’Power (kW)’, ’

Rotor speed (RPM)’,

88 ’Stator temperature 1 ( C )’, ’Wind speed (m/s)’

]

89 output_feature = ’Generator bearing rear temperature ( C )’

90 time_data = data[’# Date and time’]

91

92 # Prepare data for train_test_split

93 X = data[input_features]

94 y = data[output_feature]

95

96 # Split the data into training set and test set

97 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.3, random_state=42)

98

99 # Extract date and time for the test set before scaling

100 date_test = time_data[X_test.index]

101

102 # Standardize the data

103 scaler = StandardScaler()

104 X_train = scaler.fit_transform(X_train)

105 X_test = scaler.transform(X_test)

106 # Define the deep neural network model. Adjust neuron density and

activation function. These values were choosen based on relevant

literature and hardware constrains.

107 model = Sequential()

108 model.add(Dense(512, input_dim=X_train.shape[1], activation=’relu’))

109 model.add(Dropout(0.5))

110 model.add(Dense(512, activation=’relu’))

111 model.add(Dropout(0.5))

112 model.add(Dense(256, activation=’relu’))

113 model.add(Dropout(0.5))

114 model.add(Dense(1))

115

116 # Compile model

117 model.compile(loss=’mean_squared_error’, optimizer=’adam’)

118

119 # Train the model

120 model.fit(X_train, y_train, epochs=10, batch_size=64, verbose=1)

121 # Perform prediction

122 y_pred_train = model.predict(X_train).flatten()

123 y_pred_test = model.predict(X_test).flatten()

124

125 r2_train = r2_score(y_train, y_pred_train)

126 r2_test = r2_score(y_test, y_pred_test)

127



128 rmse_train = np.sqrt(mean_squared_error(y_train, y_pred_train))

129 rmse_test = np.sqrt(mean_squared_error(y_test, y_pred_test))

130

131 mae_train = mean_absolute_error(y_train, y_pred_train)

132 mae_test = mean_absolute_error(y_test, y_pred_test)

133

134 mape_train = np.mean(np.abs((y_train - y_pred_train) / y_train)) *

100

135 mape_test = np.mean(np.abs((y_test - y_pred_test) / y_test)) * 100

136

137 print(’Train Metrics:\nR2:’, r2_train, ’RMSE:’, rmse_train , ’MAE:’,

mae_train , ’MAPE:’, mape_train)

138 print(’Test Metrics:\nR2:’, r2_test, ’RMSE:’, rmse_test , ’MAE:’,

mae_test , ’MAPE:’, mape_test)

139

140 deviations = y_test - y_pred_test

141

142 UCL = deviations.mean() + 3*deviations.std()

143 LCL = deviations.mean() - 3*deviations.std()

144

145 # Prepare data for plotting

146 plotting_data = pd.DataFrame({’Date’: date_test ,

147 ’Actual’: y_test, ’Predicted’:

y_pred_test})

148 plotting_data[’Date’] = pd.to_datetime(plotting_data[’Date’])

149 plotting_data.sort_values(’Date’, inplace=True)

150

151 # Plot 1: Actual vs Predicted

152 plt.figure(figsize=(10, 5))

153 plt.plot(plotting_data[’Date’], plotting_data[’Actual’], label=’

Actual’, color=’red’)

154 plt.plot(plotting_data[’Date’], plotting_data[’Predicted’], label=’

Predicted’, color=’green’)

155 plt.title(’Generator Temperature vs Prediction Result’)

156 plt.xlabel(’Date’)

157 plt.ylabel(’Generator Bearing Temperature ( C )’)

158 plt.legend()

159 plt.xticks(rotation=45)

160 plt.grid()

161 plt.show()

162

163 # Calculate Deviations

164 plotting_data[’Deviations’] = plotting_data[’Actual’] -

plotting_data[’Predicted’]

165

166 # Calculate standard deviation for the Deviations

167 std_dev = plotting_data[’Deviations’].std()

168

169 # Set UCL and LCL (usually set at mean 3*std_dev for control

charts)



170 plotting_data[’UCL’] = plotting_data[’Deviations’].mean() + 3*

std_dev

171 plotting_data[’LCL’] = plotting_data[’Deviations’].mean() - 3*

std_dev

172

173 # Plot 2: Control Chart

174 plt.figure(figsize=(10, 5))

175 plt.plot(plotting_data[’Date’], plotting_data[’Deviations’], label=’

Deviations’, color=’blue’)

176 plt.axhline(y=plotting_data[’UCL’].values[0], label=’UCL’, color=’

red’) # UCL as straight line

177 plt.axhline(y=plotting_data[’LCL’].values[0], label=’LCL’, color=’

yellow’) # LCL as straight line

178 plt.title(’Generator Bearing Temperature Deviations’)

179 plt.xlabel(’Date’)

180 plt.ylabel(’Deviations ( C )’)

181 plt.legend()

182 plt.xticks(rotation=45)

183 plt.grid()

184 plt.show()
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