Can VLM replace human annotators in human-in-the-loop systems?
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Introduction

While human-in-the-loop (HITL) systems enhance computer vision perfor-
mance, they introduce significant scalability challenges. Our project replaces
human annotators with Vision-Language Models in feedback loops, preserv-
ing expert guidance while eliminating manual bottlenecks. This VLM-in-the-
loop approach maintains decision quality while enabling unlimited scalability.

Dataset

Results

= Dataset constructed from COCO 2017/, focusing on four diverse object
categories: books, birds, stop signs, and zebras.

= Filtered images to include only high-quality annotations with minimum
object area thresholds ensuring visibility.
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Figure 1. Dataset statistics Figure 2. Dataset splits

Architecture
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Figure 4. Results of the different experiment runs for the
Human-in-the-loop approach and the VLM-in-the-loop approach. Each
cluster of plots in the figure corresponds to a different initial training
dataset proportion : 20%, 40%, 60%, 80%, 100%(fully supervised).

HITL approach requires initial labeled data to train a model and relies on
human annotators to verify generated masks, creating bottlenecks in scaling
and consistency. Our proposal, VLM-ITL, replaces human verification with a
VLM (although it still requires labeled data to begin the annotation process).
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Figure 3. VLM in the loop: the human annotator is replaced by a VLM that
decides whether the segmentations are correct or not.

VLM-Prompt: Examine this image showing object segmentation masks.

The colored areas represent the computer’s identification of objects in the image.

The computer detected these objects: {pred_class_names_str}.

Answer with:

- Begin with "yes” if both the object classes and segmentation masks are accurate.

- Begin with "no” followed by an explanation if any objects are misclassified or poorly
segmented.

Assumptions

Parameter Value Description

Human 80 Average time required for a human to manually segment an object instance in the COCO
annotation seconds dataset

time

Binary 3 Average time, it takes a human annotator to provide binary feedback(approve/reject) to a

judgment time |seconds segmentation model generated mask

loU approval 0.6 Minimum intersection over union(loU) score for a prediction to be automatically approved in
threshold the active learning loop

Figure 5. Several assumptions made to calculate the annotation time for
different experiments and to simulated the human, in the "hnuman in the
loop” approach.[1],[2]

VLM-Prompt: You are an expert quality-controller for instance-segmentation.

**Your task (think step-by-step in your head):** 1. **List objects you *visually* see** in
the coloured masks.

2. "*Compare** that list with the model’s declared detections: pred_class_names_str
3. "For every detected object™, judge whether the coloured mask tightly fits the
object(60% loU, little background or spill-over).

4. **Check for errors™: missing objects,wrong class, poor masks, extra masks / false
positives. After you have finished your internal reasoning, **output only one line**:

* ok (( 0%

yes
good.

* ok (0

- if and only if **al

no - <one-sentence reason>

|**

objects are correctly detected **and™* every mask is

3k k

- otherwise.

(Do **not™* reveal your private reasoning.)

Analysis and Observations

Observation Summary Description

Chain of Positive effect ~ We observe that guiding the VLM trough a reasoning process to judge the
Thought map images has a positive effect on correctly judging segmentation masks. This
prompt translates directly into an increase in map performance.

Although not included in the plot( for clarity), we get the following results when
implementing the reasoning prompt into our active learning vim approach:
Initial training proportion - map iteration 1 - map iteration 2:

20 % - 0.667 - 0.685 |40 % - 0.665 - 0.698 | 60 % - 0.674 - 0.665 |80 % -
0.690 - 0.682

VLM Clustered The VLM struggles with classes that tend to appear in clusters or that tend to
struggles objects appear multiple in instances in images. We see additionally that the VLM is not
Many instances | good at judging weather a single object has been properly segmented, when

in one image there are multiple masks overlapping it. Finally we observe that the VLM is not
Small objects always consistent in its judgements regarding similar segmented images. This
Not fully might be a contributing factor to the disparity in results across different
consistent iterations and experiments.
*This are qualitative observations and specific to Ovis2-8b(the vim model
employed in this work).

Figure /. Observations on experiment runs.

First of all, the plots displayed in Figure 4 present clear issues. The start-
ing point of the different runs (point O in both for human-simulated and
vim-active plots) at different initial training sizes, do not follow the logical
increasing map trajectory. It is to be expected that the more ground-truth
annotations the segmentation model has, the better its performance on test
set will be. Despite this we see that for example for 40% of initial training set
pretraining of mask-rcnn, the yielded map is lower than at 20%. Additionally
the fully supervised scenario (theoretically the ideal scenario, given the avail-
ability of all gt masks for training) gets a lower map score than some of the
iterated vim-judged models at 80% initial pretraining.

We hypothesize that the current fixed epoch setting, that does not factor in
the size of the training data, could be hindering the convergence of results
at higher training data sizes. On top of that, the use of pretrained mask-
rcnn, and its learned parameters, might be obscuring the results and effects
of training on this relatively small data-subsets. Hence, we propose an adap-
tive scheduling of epochs dependent on training pool size, paired with early
stopping to avoid overfitting. Additionally using a non pretrained segmenta-
tion model could remove uncertainty from the results.

In the calculation of annotation time, neither the annotations involved for the
pretraining of Mask-rcnn and the VLM model have been considered. Both
of which might have seen COCO. Quantifying the effect of these issues is
challenging, and remains to be analyzed in future work.

Thus, although the results at first glance suggest that the VLM-in-the-loop
approach presents significant improvements in performance and reductions
in annotation time with respect to an analog "Thuman-in-the-loop” approach,
we categorize our results as inconclusive. The inclusion of the aforemen-
tioned could potentially resolve these issues and shed some light on the re-
sults.

Example Cases: VLM judgments

Figure 6. Problematic samples judged by VLM.

A correct (green), partially correct (orange) and incorrect (red) VLM judgments
are presented. Alongside, the images passed to the VLM; original image to-
gether with the overlaid masks; are provided.

"the image shows a bird in flight with various colored segmentation masks
overlaid on it. the segmentation masks are used to identify different parts
of the bird, such as the wings, body, and tail. the colors used for the
segmentation masks are purple, blue, yellow, green, and red, which are
not standard colors for object detection but are used here to distinguish
different parts of the bird. the computer has detected the bird as the main
object in the image. the segmentation masks appear to accurately identify
the bird's different parts, with each color representing a distinct segment
of the bird's anatomy. the segmentation is clear and well-defined, with no
apparent misclassifications or poor segmentation.

https.//github.com/GermanButtiero/vlm-in-the-loop

Grounded-Segment-Anything

Both previous methods still required some labeled data to begin the
process. We propose a fully automated annotation system that eliminates
human intervention and requires zero labeled data to start. This
investigation does not study the use of VLM in the loop, but instead is an
attempt to transfer learning from the VLM(Grounded SAM2) to
MASK-RCNN. Grounded SAM2 is computationally intensive, consumes
12-24 GB of VRAM and is not designed for real-time inference (0.3-1 FPS).
On the other hand, MASK-RCNN is light weight and real-time capable
(5-10 FPS).

Therefore, it would be of great value to use as a large foundation model
such as Grounded SAM2 to auto-label data for use in training smaller
finetuned models such as MASK-RCNN as shown in Fig 8.
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Figure 8. Grounded SAM auto-labeling: Grounded SAM?2 processes
unlabeled images to generate segmentation masks, which are used as
pseudo-labels to train MaskRCNN without human annotation.

Obviously, the performance of MASK-RCNN will depend heavily on the
quality of the pseudo-labels generated by Grounded SAM. Therefore, we
evaluate the quality of those annotations by comparing them against the
ground truth COCO labels. The quality of those annotations is observed to
be much lower than expected as shown in Table. 1. Furthermore, some
qualitative samples are shown in Fig 8.

Set book AP | zebra AP | stop sign AP | bird AP | mAP
Training Set | 0.08 0.37 0.55 0.34 | 0.33

Table 1. AP per class and mAP of the pseudo-labels generated by grounded
sam.

Figure 9. Sample predictions from grounded sam.

To conclude this study, we finally evaluate Mask-RCNN trained with
pseudo-labels and compare it against the fully supervised one. As expected,
due to the poor quality of the pseudo-labels the mAP of the auto-labeled
Mask-RCNN is much less than that supervised with human annotations.
We also acknowledge that the relatively okay performance of 0.49 mAP for
the auto-labeled model is mainly due to the fact that we initalize our model
with pre-trained weights, otherwise the performance would be alot worse.

Model | Mask-RCNN? | Mask-RCNN?2
MmAP 0.65 0.49

Table 2. mAP for human! and Grounded SAM? supervised Mask-RCNN.
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